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A Study of the Time-Dependent
Wind-Driven Ocean Circulation1
by

Ge Veronis2 and G. W. Morgan3

Abstracts This investigation is concerned with the
large~scale wind-driven moticns of the ocean and their responses
to a time variation in the wind, Starting from the equations
of motion for an inhomogeneous fluid, a detailed formulation of
the problem is presented, including the listing and discussion
of the assumptions and simplifications necessary to reduce the
general mathematical model to one which may be successfully
attacked analytically.

Since the real ocean is haroclinic, the problem is
formulated to include a non-uniform density distribution. Two
special cases are considered,

(1) An ocean consisting of two superposed layers of con-
stant density is assumed and the equations are integrated over
each layer to simplify the analysis, Attempts at an analytical

solution for this case were unsuccessful,

The results presented in this paper were obtained in the
ecourse of research conducted under Contract N7onr-35801.

Research Assistant, Graduate Division of Applied Mathematics,
Brown University, ﬁrovidence, R. I,

3 Associate Professor of Applied Mathematics, Brown University,
Providence, R. I.




Al11-101 2

(11) A more general density distribution is then assumed;
but a more restrictive assumption is made concerning the verti~
cal variation of velocity. In particular; it is assumed that
there exists a (variable) depth below which the velocities are
negligibles As a result of this assumption, a direct relation
is found between the thermocline and the free surface. The
equations are integrated from this depth up to the free surface,
The linearized equations are then subjected to an analytical
treatment consisting of a perturbation expansion in terms of a
parameter which is proportional to the frequency of the wind
variations The resulting equations are solved by boundary
layer technique,

Results are derived for the response of the mass transe
port to slowly varying winds, and the effect of the wind on the
intensified stream near the western boundary is discussed in
detail,

The two~layer steady problem is also solved and the
steady position of the thermocline is determined,

e e i e o e e e A e e oo e - B e S ——




Al1-101 3

le Introduction. Much of the investigation, both theo-
retical and observational in the field of oceanography has center-
ed around the dynamics of ocean currents - including the mass
transport of the Gulf Stream and the Kuroshio Current, and the
general oceanic circulations Recently interest has developed
regarding the response of the thermocline (the region of sharp
vertical gradient of density) to a time-varying winde

Since the time of Ekman's first paper [1]*, a large
number of papers have appeared 1n some of the geophysical jour=-
nals dealing with various aspects of ocean currents. However;
analytical investigacions of the problem of general oceanic
circulation have met with success only in récent yearss In the
past decade various interesting and meaningful mathematical
models have been suggested by numerous investigatorss Sverdrup
[2] and Reid [3] proposed a fairly simple model which seems to
give very good qualitative results for a region with only one
north-south boundary, Stommel [4] considered two linearized
models with a simplified viscous termes His very important con-
tribution to the overall problem is based on the difference
between the results obtained with the two models. In one case,
the Coriolis term was constant and the resulting streamline
pattern is ldentical with the one in a model with no rotations
In the second case, the Coriolis term varied linearly with

latitude and westward intensification resulted - a factor which

* Numbers in square brackets refer to the bibliography at the
end of the paper,
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was not present in the previous case. Since Stommel's paper

all problems dealing with general circulation contain a varying
Coriolls parameters Munk [5] refined all the previous work and
included the general viscous terms in the equations of motion,
He solved the problem of a steady wind blowing over an enclosed
ocean, taking account of many of the salient features which are
present in the real ocean, Munk's work was extended by Munk

and Carrier [6] to include oceans of various geometrical shapes,
viz., triangular and semi-circular., It was further extended

by Munk,Groves, and Carrier [7] to include the non-linear terms
by means of a perturbation procedure.

Along with the American publications, a number of papers
have appeared in Japan. Notable among the Japanese authors is
Hidaka, who published a series of articles covering many of the
interesting phenomena of oceanographic problems., Among his con=-
tributions are a series of three papers on drift currents in an
enclosed ocean [12], [13], [14], and a contribution concerning
the neglect of the non=-linear terms in the solution of problems
in dynamic oceanography [15],

Practically all of the work done so far in ocean current
problems has been confined to motions which are independent of
time. Each publication has treated some aspect of the general
problem of oceanic circulation, This problem essentially con=
sists of finding the dynamic pattern which results from a given
distribution of winds acting on the ocean surface.

The complete problem contains a large number of features,

such as large-scale oceanic circulation, surface waves,upwelling,
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ete, To find all such motions one would have to take into ac-
count the effects of the wind, density and temperature distribu-
tion, the topography of the ocean bed and possibly even such
features as salinity. Needless to say, a mathematical analysils
including all these features is impossibles It is therefore
necessary to decide what particular aspects of the problem one
wishes to studys In this paper we shall confine our attention
to large~scale wind-driven motions in the oceans and their rew-
sponses to a prescribed time variation in the winds In the
Atlantic Ocean, such large~scale motions must include the Gulf
Stream and its counter-currents, the Sargasso Sea, etcs

The time-dependent problem has also been considered by
Ichiye [16] » We shall discuss his work later in the report.

It has been generally agreed upon by oceanographers
that the type of phenomena we wish to consider can be adequately
described by the dynamics of the problem alone, the temperature
effects being included by way of an assumed semi-empirical den-
sity distribution, At the Woods Hole Oceamgraphic Institute;
experiments with a model parabolic ocean basin verify the above
conjectures Hence, in the subsequent analysis, we shall neglect
direct temperature dependency in the treatment of the problem
and shall include only the effects of wind and gravitation,

A large part of our report is concerned with the formu=
lation of the problem and the assumptions made to reduce the
general problem to one which can be attacked mathematically, 1In
the past a discussion of such assumptions has often been vague,

It was felt therefore that an explicit and detailed analysis of

e et - - 5
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Al1-101 6

the simplifications involved 1n the formulation of the problem
might be welcomed by workers in this field and that it might
help to clear up any existing misconceptions concerning the

validity of some of the assumptionse.

2« Discussion of Results. At this point we shall dlscuss,

without resorting to mathematical detail, the basic assumptions,
the results, and the conclusions of the present investigation,
In this manner we hope to convey a more integrated picture of
the physics of the problems

Mathematically, the motion which we want to study can
be defined by the Navier-Stokes equations of motion with the
viscous terms replaced by terms arising from a macroscopic vis-
cosity, viz., an eddy viscosity, The complete non-linear equa-
tions are too difficult to solve, however, so that we are forced
to make a number of simplifying assumptions which we shall 1list

belowy

le¢ The fluid is assumed to be incompressible, but it may
be inhomogeneouse

2+ The equations on a rotating sphere are approximated by
equations in a rectangular Cartesian system, The effect of the
sphericity of the earth 1s retained by allowing the Coriolils
parameter to depend on the latitude., Since we shall consider a
rectangular ocean in the Cartesian system, a few remarks must
be made concerning the region of the sphere onto which the rec-
tangle 1s mapped, The constant east-west distance of the rec-

tangle is preserved in the mapping of the rectangle onto the
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sphere. Such a mapping is not conformal since angles between
l%nes are not preserveds The region under consideration must
be well removed from the north pole.

3¢ The vertical acceleration terms and the viscous terms

are neglected in the equation of vertical motion so that, in
N

Z .
n 1s the free surface height and p = O at z = n, The density

effect, hydrostatic pressure is assumed, i.e., p = gj pdz, where
p may, of course, be a function of the space coordinatess In
Appendix 3 it is shown that for the problem which is independ-
ent of time, the hydrostatic pressure assumption is necessary
only in the depths where there is no motion if one desires a
solution for the components of the mass transport only. If it
is necessary to find the shape of the free surface, however; or
if the non-steady problem is considered, this assumption or some
analogous one must be made,

4 As stated in the introduction, the thermodynamic effects
are accounted for only empirically by stipulating a dersity dis-
tribution, We assume p = p[z - T(x,y,t)] where the function p
of the variable (z = T) can be prescribed to fit observational
datas This functional form for p makes the curves of constant
density parallel,

5¢ The equations of motion are integrated over the verti-
cal coordinate, z.

In order to perform this integration it is necessary
that we specify the density distribution since p appears in
some of the integrands. We consider two cases,

(i) The surface z = T separates two layers of constant

I e o et an —_—
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density., The equations of motion in each layer are then inte-
grated over the depths of the respective layers and the non-
linear terms are neglected. We also neglect shear forces at
the bottom of the lower layer and at the interfaces No assump=-
tion is made concerning the vertical distribution of velocity*,
but instead, we hope to solve for the integrated velocities
(i.esy the transports) in each layer, This case is referred to
as the two-layer problems Unfortunately, it is much too diffi-
cult to handle analytically, and consequently we must consider
a second problem,

(ii) The mamner of performing the integration in this case
will lead to a considerably simplified problem which allows us
to stipulate a more gereral density distribution than that in
(1)e The density is specified as a continuous function of depth
and the ocean 1s divided into three layers, A layer of constant
density, p,y lles above the surface z = T(x,y,t)s Fromz =T
down to z =T ~ d (4 is constant) the density increases linearly
with depth from p, to the value p_pe Below z =T - d, the den-
sity has the constant value; P_p®

We assume that there is a depth z = - h(x,y,t) below
which the velocitles may be considered negligible (in some
suitably defined sense)s The pressure gradients will then also
be negligible below z = -~ he As a consequence of this assumption
and the previous assumption of hydrostatic pressure, a relation-

ship exists between the surface z = T and the free surface

* Compare this with case (ii).
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zZ =1, Vvizey, T == p,Bp n = C (where Bp =p_p =p,and T = =C
when n= 0). Thus, if the velqcities are negligible in the

depths of the ocean, the thermocline must respond immediately
to a change in the shape of the free surface in order to main=-
i tain negligible pressure gradients at these depths,

The three assumptions, (é) hydrostatic pressure;

E (b) negligible velocities in the ocean depths, and (c) con-
stant density below the thermocline,are crucial for the present
case« It is, of course, possible that any one or a combination
| of these three assumptions may be incorrecte If this be the

\ case, then the thermocline need not respond to the free surface
immediately., The frequency of the wind variation which we shall
consider later in our development will be small so that assump=-
tions (a) and (b) seem plausible, . Thus the only motion exist-
ing below the thermocline 1is caused by vertical shear and this
motion decays exponentially with increasing depth according to
Exman [ 1],

The equations of motion are then integrated from the
depth z = = h to the free surface z =n. This problem will be
called the one-layer problem because of the single integrations
The depth, z = - h, does not appear explicitly in the integrated

equations,

In both cases, the effect of the wind is represented

h by the shear stress at the ocean surface and appears in the
evaluation of the vertical viscous terms at the upper limit of
i integration (free surface),

An additional difference between the two problems 1s

e m e o w s n = o e e s i m——— e AW . m e men e ee = P —
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that the two-layer problem specifically restricts the fluid of
the top layer to remain in the top layer and the fluid in the
lower layer to remain in the lower layer., The one-layer prob-
lem has no such restriction and an interchange of fluid may
result, However, because of the integration we have no inform-
ation concerning this vertical motion,

6+ The non-linear terms in the equations of horizontal
motion are neglected. A plausibility argument for this assump=-
tion,based on the results of [7], is presented in Appendix 2,
However, our results must now be considered tentative, since
the case presented in the appendix for the neglect of the non-
linear terms is a plausibility argument and not a justification.
The primary motive for neglecting the non-linear terms is our
inability to cope with them analyticallye

7« The Coriolis parameter is linearized. In effect,

this is comparable to linearizing the sine of an angle when the

angle varies between 15° and 60°,

With the above assumptions and simplifications we are
in a position to attempt a solution of the non-steady problem.
The ocean 1s chosen to be rectangular with vertical walls as
boundaries on the east and wests Because of the presence of
viscosity, the boundary conditions on these walls are that the
velocities vanishs The boundaries on the north and south are
water boundaries,

The wind-stress is written as

Ty = = (W' +T''sinwt)cos ny

s s
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where W', ', w, and n are constants and 7, (Fig. 1) 1s the
east-west component of the stress. The above form for the wind-
stress may be considered as the general term of a Fourier series
expansion so that the wind-stress may be generalized for the
linear problems However, for our numerical example, we have
chosen‘u:to give a period of one year and n as 2n/s where s is
the north-south length of the ocean (0 { y £ s)s The wind-

stress component t.. is assumed identically zero. Since the wind -

y
stress is prescribed in such a manner that its y derivative
vanishes at y = O,s, it appears reasonable to demand that these
boundaries be streamlines and that the normal derivatives of

the velocitles vanish there.

The one-layer problem is solved by the following proce=-
dure. The equations are non-dimensionalizeds, The non-dimen=-
sional velocities and free surface height are expanded in per=
turbation series with the non-~dimensional time parameter as the
perturbation parameters Each resulting set of equations 1s
then solved by application of the boundary layer techniques

The conditions for the validity of the expansion restrict
the time variation to a maximum frequency of seasonal oscilla=~
tions In the numerical example, yearly frequency 1s assumed
and the perturbation terms of second-order and higher are
neglectede The error involved in neglecting the second-order
term as compared to the zero~order term is about 5%, and it 1is
about 20% as compared to the first-order terms The remaining
physical parameters are given values which correspond roughly to

those of the North Atlantic Ocean,
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The following discussion will be based on the non-
dimensional quantities defined in the body of the reports When=
ever dimensional quantitles are mentioned; we shall include the
dimensions,

The graph of the north-south component, V, of the mass
transport vs, the east-west coordinate x! near x' = 0, the
western shore, is shown in Fig, 2 for the value y' = 0s25, ises,
where the Gulf Stream is most pronounced.s The Gulf Stream re-
gion is the region of large positive Ve The region of negative
V adjacent to the Gulf Stream corresponds to the offshore
counter-current,

The Gulf Stream responds to the wind in such a manner
that the mass transport and the wind are 1n phase whenever the
latter takes on its maximum or minimum value. At all other
times the mass tramsport lags behind the wind with the greatest
lag occurring when the wind reaches its steady positionf. At
this time the mass transport is about 9 days away from its
steady value '« The length of this inwerval, i.e., nine days,
4s independent of the frequency for slowly varying winds.

The wind (see Fig. 1) and the mass transport attain
their maximum values at T = /2, The mass transport now has a
magnitude of (1 + I'AW') times its steady values Thus, within
the accuracy of the present method of solution, the time at

which maximum transport occurs and the magnitude of the maximum

* We shall refer to the "steady position" whenever the time-
dependent contribution of the wind is zero.

** 1,es, the value due to its response to a steady wind
T T o= W' cos ny.

s L
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transport are independent of the frequency., The magnitude of
the out-of-phase effect (the second term in the perturbation

series) which is largest when the wind has its steady value;

is proportional to the frequency.

The time variation of the wind affects the Gulf Stream
only by changing the mass transport through the Stream. It
does not change the Stream's positions

As can be seen from Fig. 24 the relative importance of
the out-of-phase effect is éreatest in the counter-current,

Figure 3 is a graph of the north-south mass transport
component near the eastern boundary of the rectangular ocean
at the latitude y! = 0.25, The accompanying out-of-phase effect
is shown at its maximum in the figure, V is negative on the
eastern coast, i,e., the mass transport is toward the south.

Figures 4, 5, and 6 show the contour lines of the free
surface in the southern half of the ocean for various times.
With the values of the contour lines multiplied by =200 the
three flgures represent the contour lines of the thermocline.
Qualitatively, the results agree fairly well with observation
though some of the natural features are missing. It seems
likely, however, that most missing features result from local
effects which we have not taken into account,

Because of the lengthy computations involved, we have
calculated numerical results for only one set of values of the
parameterss It can be seen from the analytical results that if
the average depth of the top layer be changed, the values for

the deflection of the free surface and the out-of-phase

L e i d——— A T et
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velocities will changes Specifically, if the depth 1s decreased,
the free surface deflection is increased and all out-of-phase
Quantities are increased,

The above results appear to invalldate the solution of
the problem as obtained by Ichiye [16]*. Ichiye neglected the
contribution of the non-steady term in the integrated continuity
equation, However, with the values of the parameters used in
Section %, the magnitude of this term in the interior of the
ocean is as much as ten times that of the remaining non-steady
terms which were retained in Ichilye's analysiss

We have computed the mass transport through the Gulf
Stream for the one-layer steady problems With the given wind

6

distribution our result is 26,6 x 10° metric tons per second.

"Thls value is about three-fourths of Munk's value [ 5] and about

one-third of the observed value. Munk used an empirical east=-
west wind distributions

The two-layer steady problem is solved in Section ¥
where it is shown that the mass transport streamline pattern is
the same as in the one-layer problem. This is to be expected
since, for the steady case, the same assumptions are made regard-
ing negligible velocities below the thermocline. Thus, the
height of the thermocline is shown to be proportional** to the
free surface deflections ©Since the free surface height is deter-

mined largely by the thickness of the top layer, the thermocline

e e Ao e - ——— e e = v

* In [ 16] the term corresponding to W! in the present paper
was assumed to be identically zero. 1i.e., the wind had a
zero mean value,

** The factor of proportionality is the reciprocal of the
density difference,

[,
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variation depends on the choice of the two parameters, denslty
difference and thickness of top layers

By varying the two parameters we can get good qualita=~
tive agreement with observations of the shape of the thermocline,
In Figs 9, a cross-section of the computed thermocline is shown
| for four pairs of values of the parameters., Because of the
rather vague definition of the actual thermocline, we cannot
state specifically the extent of quantitative agreement between
our computed results and the observed values. Consider,

however, the curve in Fig. 9 with a depth of the top layer of

200 meters and a density difference of 0,0025, For that curve
the results disagree by a factor of three when compared to some
of the measurements of the thermocline off Chesapeake Bay [10J.
The two-layer non-steady problem constitutes an attempt
¥ to drop the assumption made in the one-layer problem that the
I velocities vanish at some great depthe As a consedquence the
problem becomes much more complicated and it is necessary to
introdﬁce some other simplifying assumptions, viz., to neglect
the shear forces at the bottom and at the thermocline. This

may have far=-reaching effectss These simplifications notwith~

standing, we were unable to obtain a solution. A brief descrip-
tion of our attempts at such a solution follows,

First, the equations are non~dimensionalized as in the

one-layer case. The integrated continuity equation for the top
layer now contains the time derivative of the magnitude of the
deviation of the thermocline from 1ts equilibrium position.

Since this term is very large, the perturbation method used in

C e e e e D U [P, - e e -
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the one=layer problem is restricted to a range of frequency
values corresponding to less than one oscillation every hundred
yearse Since these results are not physically interesting no
numerical results were computed, |

A secbnd method of attack is then attempteds The wind-
stress term is first divided into its steady and non-steady parts
and the two problems are treated separately without resorting
to a perturbation in the time parameter, This method had been
attempted for the one-layer problem with no success, In the
present case, however, it was hoped that the new parameter in-
volving the density difference could be used to advantages Un-
fortunately, an analytic solution still appears to be quite
hopeless,

The one interesting fact which seems to emerge from the
attempts at the solution of our idealized, two-layer, non-steady
problem concerns the magnitude of the lower layer transport. We
must recall that, in the case treated, the solution 1s restricted
to the frequency range for which the thermocline responds to the
variation of the top surface in a quasi-steady manner; i.e.; as
a result of any change in the free surface, the thermocline
assumes the same shape as it would for a steady problem with the
given free surface, except for a small out-of-phase correction,
In this case, the mass transport in the lower layer, excluding
whatever transport may be caused by shear at the interface; is
of the same order of magnitude as that portion of the transport
in the upper layer which is out of -phase with the wind. For a

higher frequency this result does not necessarily hold true,

o ——— i b
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A final word should be said about the lack of dquantita-
tive agreement between our computed results and observation,
The factor of three 1is not surprising when one considers the
very 1dealized model which we have assumed., A number of more
realistic assumptions may certainly affect our quantitative
results by such a factor, The inclusion of the non-linear terms,
a better representation of the wind effects on the water, a
more natural topography, and a non-constant eddy viscosity may
well alter the quantitative results and bring them into closer

agreement with reality.

3¢ Formulation of the Problems It is our aim to derive

expressions for the velocity and the pressure satisfying the
three equations of motion on a rotating sphere

oq
= +q oyl +20xq + Qx(Qxr) = - L Vp +F + (0 ¢ A;V)g
the continuity equation

vea=0

and the boundary condition that ¢ = O on a land-water boundary.

Here, * ) )
q = (u,v,w) denotes the velocity vector relative to a
- coordinate system rotating with the sphere,

Q denotes the angular velocity vector representing the
earth's rotation,

p denotes the pressure,
p denotes the density,

F denotes the external forces per unit mass (in our case,
gravitation),

* u,v,w are spherical components of velocity along the direc=-
tions of the radius, the meridians, and the parallels of
latitude respectiveiyo

© o e e et e e~
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(V * AV)q represents the eddy viscosity term (discussed
below).
Let us consider the expression for the eddy viscosity
term in a rectangular coordinate system, thls being the system
in which we shall later write our equations.

We define the operator (V ¢ AiV) as follows:
(Ve a5 Sy )+ 2l 52 + 5y 1),

where Al, A2, A3, may depend on the space coordinates.s These
three quantities (the coefficients of the lateral and vertical
eddy viscosity) have been measured and are known to vary throughe
out the ocean.. The definition of the viscous coefficients and
our knowledge of their magnitudes, however, are rather vague.

In view of this, and because of subsequent analytical simplifi-
cations, we assume that the lateral kinematic eddy viscosity

coefficlents are constant and equal, so that

1 )2 alds o2 41
(v . Aiv Al ) + (A, )

where A is now a kinematic eddy viscosity and is constante No
gimplification will be made concerning A,,

Our continuity equation is valid for an incompressible
fluid, In the steady proplem the density may be more general
and we have simply V °* (pg) = O In the non-steady problem; the
assumption of incompressibility is imposed but the fluid may be
homogeneous.

We shall want to make use of [7] regarding the effect
of the non-linear terms, DBecause the results in [7] are discussed

in terms of rectangular coordinates and because the use of
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rectangular coordinates considerably simplifies the analysis,

we shall first transform phe equations of motion from spherical
to rectangular coordinates in such a manner that the equilibrium
free surface which establishes itself in the spherical system

as a result of gravity and centripetal acceleration corresponds
to the x-y plane of the rectangular system. The apparent gravi-
tational force, i.es., the force which is the resultant of true
gravity and centripetal acceleration, acts in a direction normal
to this equilibrium surface.

In Appendix 1, it 1s shown that our original equations

reduce to
gul | oyr 8ul oy oyt dul ! 7y =~ 12PB .l '
5= * V' 5 3y 2Qv sin(R) 5 ax+.Jy(V AiV)u (L)
ﬂl+u'.§y_'.+vf.gll+2§2u'sinz :...:LQE#. Ve A Vvt
p 8z & (3)
gu' L, gv'! L gw' - o L4
ox 8y * 8z ()
where
x,u' denote the east-west coordinate and velocity
respectively (x is positive eastward),
y,v! denote the north-south coordinate and velocity
respectively (y is positive northward),
z,w! denote the vertical coordinate and velocity
respectively (z is positive upward),
R is the mean radius of the earth,
g is the apparent gravitational acceleration on
the earth's surface,
2§Bin(%) is the radial component of the angular velocity

vector of the earth,

¢ e i e e 3 -
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The rectangular coordinate system is oriented with the
origin in the southwest corner of the ocean and with the equili-
brium surface in the x-y plane, |

A number of assumptions were made in tHe reduction of
the four equations valid on a spherical earth to the four equa-

tions given above. These assumptions are listed here for the

convenience of the reader who does not wish to go through the
detail in Appendix 1, ‘
(1) 1In the radial component of the equations of motion,
the acceleration terms and the viscous terms are
neglected in comparison to g, the gravitational accel-
erations In essence, we assume hydrostatic pressure*-
(2) A1l terms involving radial velocity are neglected in
the remaining two equations of motion on the supposi-
tion that the radial velocity is very small compared
to the lateral velocities,
(3) The variation of the radial distance, r, over the
depth of the ocean is neglected and we write r < R,

the mean radius of the earthe

(Actually, the radial distancc varios by about 1/1000
of its total length.)

(%) Terms which are divided by R are neglected in compar-
ison with all other terms,

(5) The region considered must not lie close to the north

pole since some terms which have been neglected

* In Appendix 3, this assumption is discussed in more details
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previously bercome infinite at the poles In our prob-
lem the ocean is confined to a region lying southof
latitude 70C,

(6) An appropriate interpretation of the results as applied
to the spherical earth must be made, keeping in mind
that the boundaries have been distorted, If we con-
sider a rectangular ocean in the plane, the appropri-
ate mapping onto the sphere would preserve the con-
stant east-west length. Such a mapping is not conform-
al since angles are not preserveds, (In the case :of a
Mercator projzction, on the other hand, angles are

preserved, but the east-west distance is distorted.)

Let us consider the simplified equation of vertical \

motinn (3)s In integrated form, this equation is

N
p = zf pdz (30a)
Z

where n measures the deflection of the Iree surface from its
equilibrium position and the scale of p is chosen in such a
manner that p = O on z = n. 1ilow, the density is a function of
temperature and salinity. In our treatment of the problem; how=
ever, ve wish to avold the anzlyticol difficulties introduced
by including, explicitly, the energy eyuation and an equation of
states Ve propose irstead to account for the thermodynamics of
the problem empirically by prescribing a density distribution

which roughly conforms to observation*. In particular, ve

* In Appendix 3 it is stown that a spacification of the density
distribution and the zssumption of hydrostatic pressure are
not necessary for the steady problem.
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" choose p = plz - T(x,y,t)], where the function p of the variable

(z - T) can be prescribed to fit observational data. We observe
that this functional form for p makes the curves of constant
density parallel to each other,

A complete analysis for the unknown quantities as func-
tions of the four independent variables x,y,z,t is exceedingly
difficult and we are forced to eliminate one variable by inte=-
grating our equations over the vertical coordinate, z, and then
solving for suitably defined integrated quantitiess In so doing,
we lose information concerning the dependence of the unknowns
on z. Since we are primarily concerned with general oceanic
circulation and mass transport, however, and since the integra-
tion leads to a considerable reduction in diffculty, the advan-
tages gained more than balance the loss of information involved.

Actually we cannot afford a complete loss of information
concerning the vertical dependence of velocity, This will become
apparent shortly.

The general density distribution must be specialized in
order to permit integration of the equations over the vertical
coordinates Two cases will be considered.

First, let T be a surface which separates two layers of

constant density so that

plz = T(x,y,t)] = p; for z > T(x,y,t)

and

plz = T(x,y,t)] po for z < T(x,7yt)s

For this problem it is convenient to choose the coordi-

nate system with the xy-planes parallel to the undisturbed
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equilibrium svrface and with the plane z = 0 at the bottom of
the ocean, the bottom being assumed plane in this problems A
layer of constant density Po extends from the bottom of the
ocean to the height z = Dy + 7y, where the constant Dy is the
average height of the lower layer and n, is the height of the
disturbed surface of this layer measured from the plane z = Dy,
A layer of constant density py extends from the height

z = Dy + 1y to the free surface z = Dy + n7, where D; is the
distance from z = O of the undisturbed equilibrium surface of
the upper layer and 7y is the height of the disturbed free sur-
face of the upper layer measured from z = Dqe

Then equation (3.a) becomes

e
=
l

- gpl( m + D - z) for the up](a_er }ayer.

o
n
I

=gpp(m +Dp = m = Do) + gpoln, + Dy, = z) for the lover layex
i (3e0)
If we denote all quantities in the upper and lower layers
by subseripts 1 and 2, respectively, the equations (1), (2) and
(4), with expressions (3+b) and (3.c) substituted for the pres-

sure in the upper and lower layers, respectively, become

? ! !
ou y ou p ou 1 y o1 '
I + U g+ Yy 7 2Qv, s1n(R) g 5 + p'( 1 )ul (5)
]
av. 1 OV y 3Vq y dn '
1 — =1 ! = ep L +i@
== + U 3% + vy + 2Qu, sin(.R) e 55 + p( *AVIVy (6)

— o =2 == = ( (7)
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t ! !
au au 1 ‘
st T2 T Y2y - 2 sin (g)s
an av) '
- —_—2 4+ a1 1V AN, 8
2[b — = ] + . ( A V), (8)
' >
' '
ov 1 8V ov Y
TE t U2 g V2 * 2%, sin(y) =
- 2 + a -l 2 >
elb gy v 25y 1 vy (V40 (9)
! t !
au av ow
2 4 2 4 2 - 0, (10)

ox oy 0z

where a = py1/poy b =Hps = P /P2 =Ap/p2'.

The problem defined by equations (5) - (10) with anpro-
priate boundary conditions is quite general in that no assumption
has been made concerning the vertical distribution of velocity.
As we shall see later, when the equations are integrated over z
and linearized, the simplified problem is still too difficult
to solve. For this reason we formulate a second problem which
allows a more general density distribution but which is more
restricted in other respectse.

In this problem we retain, for the time being,the gen-
eral form p = plz - T(xyy,t)]s Then the pressure terms in

equations (1) and (2) are®

i
l.@:ﬂ _a-Ed. +_g..Q.ﬂ .
180 g [ o g o
p oy sz oy P 5';'} Po (1L.p)

* FPFor the present problem the plane z = O lies on the undisturbe
ed equilibrium free surface.
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where p, = p[n - T(x,y,t) ], the density at the free surface.

’ If these terms be substituted into (1) and (2), we have

: a1'+u'§l'.+f§l&.'.-x.v‘sin2=
;o T 2 v = y; (R)

) - gl % 4, . & 81 +4(v e AU 12)
H Pz % =55k Po *f ") (
%

AVt 4 oyt 2Y' 4 g1 BV 4 oGyt sin (&) =
ot Y R

ox 8

| gﬂapd B2, 4NV A V)V (13)
-8 [ % 4, 8 XV A Vv, 13

b b |z B p oy Po "t 1

1 As stated previously, the problem will be simplified by
integrating the equations over the vertical coordinate, z.
Let us first consider the problem defined by‘the equa=-

tions (%), (12), (13). We assume that there is a depth

z = = h(x,y,t) below which the velocities may be considered
negligible* (in some suitably defined sense), and we integrate
from z = = h up to the free surface, The depth z = - h(x,y,t)
may, of course, vary from point to point in the ocean. Since
the velocities are negligibly small below z = - h, the horizontal
pressure gradients must also be negligibly small and we may

therefore write

10
P

£<]
1"
o
-~
I~
lc»
=
fl
@)
L J

(14)

gl

z=w~=h

We must now specialize the general form of the density

- distributinn because an integration involving p will actually

* This assumption is the fundamental difference between the
two problems considered,
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have to be carried out.

Define p = p[z - T(x,y,t)] in such a way that

P = Pgy @ constant for n>z > 1T

©
1

[1 + c(T - z)]lpy for T >z > 7T ~ d(c,d constants) ” (15)

= (1 +cd)p, for T=-4 >z,

©
i

p---h U

With this definition the density is a continuous function of
depth and the ocean is divided into three distinct layers. A
layer of constant density, poy lies above a region in which the
density increases linearly with depth from po to the value Pp
Finally, at the bottom, there is a layer of constant density;
P.p+ This prescribed distribution agrees well with the observed
density distribution. |

If p, as given by (15), be substituted into equation
(1%), we find that™*

ox ~ ~ Ap oax’ v Lp By (16)

where Ap = p_p = poe

If we integrate equations (16), we obtain

T:-B— q-C (17)

Ap
where z = -~ C 1s the constant depth of T when n = O, Physically,
z = - C is an average depth of the top layer or the depth of T
when the ocean surface is undisturbed (i.e., in the absence of

winds), These two dquantities are, of course, identical,

* The algebraic manipulation is given in Appendix 4(a),

S mee e e L et e e —— e - ——— L N e . = e et A—
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Iet us next integrate equations (12) and (13) from

z ==~-htoz =n, The pressure terms become™

1 P
-]E ap Z - ‘.Q-n - -h‘ a 180
U =h
- 0 .
- 18P gy == gp 80 . go=h 01 (18.b)
J-nf oy ’ ¢ Oy ¢ bp 3y

where D = C + d/2, and the complete equations are
i +7 | Tar 3u! g, +p mv' du' 4z - KV sin (L)
at 3x j N ay R

Nk

= - gD_.f_IE.-g ,]JJP. +A AT + (4, au' (19)
3x Ap -h
oV + 5 ! 1 Ov! g =" 1 Ov! g oQ0 sin (£)
v v _ + LA
B +p u' i dz +p| Vv 5y z sin (5
~-h -h
= - gD -8 T]P - -h T]P + ANV + (A V')!I !
= ngi__ 52|, (20)
where — _ - -
U = putdz, V = pv'tdz,
-h -h

p is a constant,average density,

The non-linear terms, u'(x,y,n,t)0n/3t, etc., from

*  See Appendix 4(b) for the details.

**  Since the viscous terms are, in any case, only approximations

to the actual shear stresses, we have made the further approx-

imation 1
138 (a, 8ulygy = ;‘f 3 du! - 1a. duf| "
f—h p 3z 3 Bz ) 5 J-h BE(AB 2z ldz” 5A3 3z lon *
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the interchange of integrals and derivatives of the velocity
terms have been neglected., We have defined T and V as mass
transport components rather than as volume transport components
(by simply including an average density in the definition) be-
cause we want to compare some of our quantitative results with
observations and with the results of Munk, both of which are
given in terms of mass transport.

The terms A QEll'q and AB,Qzlln must give the winde
0z '.n 3z '=h

stress terms since they represent the shear stress evaluated at
the upper limits (the shear stress terms at z = - h are negli=-
gible since -h was chosen as the depth where the motion becomes

negligible)s Thus

Ay F oL T, = x component of wind stress
8z .p

]
A Qz—lq = ¢ = y component of wind stresss

398z '.p y

In the equation of continulty we shall want to make use

of the kinematic free surface condition [9]

é% [z - q(x,y,t)] =0 at z =n.
When expanded, this equation reads

11N - 31 TR TR
Wi =3+ I %& + v %%

where v !|" etc. denotes the value of Wl (x,y,z,t) at z =19,

Integration of the continuity equation (4) yields

01@
Ml
+
ol
1

w80 . Syt |Nan 4y Ty =
pu'l =3 - pv | 3+ pw | 0
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' where w' | 1is negligible by definition of h(x,y,t)s Substitut-
-h
ing the free surface condition, we have
80 oV _ _ 2, 21
ax Ty - " Bt (21)

Fquations (19) and (20) are now further simplified by
neglecting the non-linear termss The reader is referred to
Appendix 2 for a detailed plausibility argument concerning this
step*.

Two final simplifications will be made in equations (19)
and (20), The Coriolis parameter 2&2sin(%) will be linearized
by writing 2.Qsin6%) ~ By where B = 2Q/R.

In addition, if the velocities are found in some manner,
then the free surface shape can be obtained by integrating the
equations (19) and (20) (neglecting the integrals of the non-
linear terms) with respect to x and y respectively. This yields

- 5P 2
(gDpn+%—Ethq) =X

where X denotes a known function. The solution of this quad=-

ratic equation in n is

2p
~-D+D,1+—=h1l X
Ap & D°

P_h

Ap

T]:

* Tt must be emphasized that the argument presented in Appendix
2 is one of plausibility and not one of justification. 1In
view of the desirability of obtaining an analytic sonlution
we neglect the non-linear terms in the hope that the resul%s
will agree qualitatively with observation and will so furnish
a mathematical description of the ocean circulation.
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But
2p P
1 +—xb L 2% v 1 +—=h L 2%
Ap 8 D P BP D
if 20
—=h L X <
- 2 4
Ap gp p
Hence
1% = X
gpD

provided the above inequality holds.s It will be shown in Sec=-
tion 5 that the values of the constants which are appropriate
to our problem satisfy this condition.

Hence, the final equations take the form

i) T anp. i
3t - ByV = - gDEJnCE + AAU +’tx‘ (22)
av T = - op 08 7
3 +pyT gDBﬂYE + ANV +T (23)
ax + oy at (24)

The boundary conditions are U = V = 0 on a land-water

boundary. The winde-stress is prescribed to be

T, == (W' + T sin wt)cos ny, Ty, =0

wheré W', I'! represent the magnitude of the mean wind.stress
and the amplitude of the time variation of the
wind -stress, respectively,
w is the frequency of the wind variation,

n is the wave number associated with the wind dis=
tribution.

e St——d
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One can consider the above form for the wind as a typi-
cal term in a Fourier series for a more general wind distribu-~
tion. The numerical results in this report are based on a vaiue
of w corresponding to a period of one year and n is set equal
to 2n/s where s is the north-south length of the ocean,

The problem defined by equations (22), (23), (24) to-
gether with the boundary conditions and the wind-stress term
will be referred to as the one-layer problem or Problem 1j
("one layer" because the integration over z is carried out over
the entire depth),

For the second problem in which the density stratifica-
tion is specified as two constant density layers, we have equa-
tions (5) - (10). Each equation will be integrated over the
vertical coordinate, z, with (5) - (7) integrated over the top
layer, i.e., from z = Dy + 1Ny to z = Dy +nq, and (8) - (10)
integrated over the lower layer, i.e., from z =0 to z = Dy + Mo

As in problem 1, the non-linear terms, ullq an/dt ete.,
resulting from the interchange of differentiation and integra-
tion,are neglecteds The viscous terms are integrated in the
same manner and the Coriolis parameter is again linearized,

Then the integrated forms of (5) - (10) are

i)
1 e onqp =
.a_t_ - ByVl + g(Dl - D2 + nl - ﬂg) —-é;l—]-' = AAUl + Tlx -sz (25)
v - 9 —
3y, a8V
1 1 _ 2 -
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au . 3 ' -
.5;-2. - ByTy + g(Dy + np)gzlbpony + pyng =MD +T5 -7 (28)
ax‘r2 _ 3 -
= *+ Byl + 8D + N )gs(bPaNz + PNy l=AbTo+ Ty =Ty (29)
0T, oV
2+ —2=-2 (o) (30)
TR 5t F2N2
where .
= ' = 1
Ul 5 pluldz, Vl = P‘lVle,
Do+N5 D2+q2
= _ .. v oo '
U, = p2u2dz, Vs J pzvzdz,
0 0
Tiey) Tpy 2T€ the x and y components, respectively of the wind-
Ix Y stress on the free surface
Typy o, aTE the x and y components, respectively,of the shear
2x Y stress between the lower layer and the upper layer at
the interface,
Tox? oy 2TC the x and y components, respectively, of the shear

OY stress between water in the lower layer and the ocean
bottom,

We specify T1x to take the same form as T_ in Problem 1.

p:s
The remaining shear stress terms are assumed to be negligible,
The boundary conditions are Uy = Vq = U, =V, = 0 on a land-
water boundary, i.e., vanishing mass transport in each layer.
These conditions are much more restrictive than the boundary
conditions of the one-layer problem since there can be no verti=-
cal interchange of transport across the interface at the bound-
aries,

Equations (25) - (30), together with the boundary condi=-

tions and the wind-stress, constitute Problem 2, or the two=
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layer problem (the vertical integration being carried out in
two steps),

It may seem to the reader at this point that, since we
have integrated the equations of motion over the vertical coor=-
dinate z 1n both problems, there is nothing to be gained by
considering Problem 2 in which the density distribution is more
specialized that that of Problem l. Because of the importance
of this point, we shall discuss the significance of the two
problems in more detail,

Needless to say, the problem of greatest interest in-
cludes the more general uensity distribution of Problem 1, the
four 1ndependent coordinates x,y,z,t, and the full non-linear
equations. The wind-stress components appear as the values of
the vertical shear at the free surface z = n(x,y,t)« The solu-
tion of this problem would, of course, include complete inform-
ation concerning the dependence of the motion on Zo Being
unable to attack this problem, we are forced to integrate the
equations over z and to content ourselves with a solution for
the transport components.

At first this integration over the vertical coordinate,
z, appcars to have only one shortcoming, viz., a loss of inform-
ation concerning the vertical distribution of velocity., We
cannot, however, completecly afford such a loss of information
in the formulation of the "transport" problem and some recourse
to field evidence is necessary. Unfortunately, however, accur-
ate observational data are extremely difficult to obtain. In

particulary it is gcnerally held that the motion in the deep

- —— ————a 29
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layers of the oceans 1s negligible, but no definite conclusions
have been established to this éffect. It is because of this
uncertainty that we consider the two separate problems, 1 and

2, If the motion of deep water is really negligible, the pres-
sure gradient in deep water is also negligible and the assump=-
tions of Préblem 1 are justified with the result that the thermo-
cline responds instantaneously to a change in the free surface
helght provided the hydrostatic pressure assumption is also
valids Consequently, the only motion existing in the layer
below the bottom of the thermocline is that due to the shear
force exerted by the water at the depth z = T - 4 onto the water
below it. Vertical shear will extend the motion to lower depths
but the velocities will decay exponentially in the vertical
direction [ 1] until they become negligible.

If the motion of deep water is not negligible, then we
must consider Problem 2 where no such assumption is mades In
that case, the thermocline does not necessarily respond imme-
diately to a change in the free surface and, consequently; a
pressure gradient ma& resulte Since the fluid in the bottom
layer is homogeneous and since the wave length of the thermo=-
cline is large compared to the depth of the lower layer, a
velocity with uniform vertical prcfile is set up, (hydrostatic
pressure being again assumed)s The shear stress, Toy? exerted
by the water of the upper layer onto the surface of the lower
layer also causes a velocity in the lower layer. This velocity

is not uniform verticallye The problem including the effect of
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t,. and, in addition, the stress of the ocean bottom on the

2
lo:er layer, is so complex that an analytic solution is out of
the question. We therefore assume that the effects of these
shear stresses on the velocity in the lower layer are negligible
when compared to the velocity resulting from the variation of
the thermocline,

If the two problems were now solved and the results
compared with available observational data, it might be possible
to determine whether or not sensible deep-water motion exists.
As we shall see in Sec. 5, however, Problem 2 camot be solved

by the methods used in the present paper, and numerical methods

of solution may have to be employed,

4. Solution to Problem 1, The solution to Problem 1

will be carried out by means of a boundary layer technique, For
the convenience of the reader who is not familiar with this
technique and whowishes to follow the details of the present
section, a discussion of boundary layer analysis is presented
in Appendix 5.

The solution of differential equations by boundary layer
analysis can be carried out most conveniently if the equations
are first put into non-dimensional form., Let the rectangular

ocean have dimensions
ogxgrl, 0Ly <£s (Fige 1).

Choose as a reference length the north-south dimension,

s, and define dimensionless coordinates x', y' by

v e e e . - - e - -




A11-101 36
y = sy'y, x = sxt,

Then the east-west and north-south dimensions of the ocean in

non-dimensional coordinates will be
Ty
O_<_x’<-s-sr, 0<y'< 1o

We shall assume that the ocean is bounded by land on
x! = O,r and by water on y' = 0,1,

Now differentiate equation (3,23) with respect to x and
equation (3,22) with respect to y and subtract. Substituting
for the prescribed wind-stress, T,, we then ha&e

BV _ 2" 8T .__ - oV _ a0
53'ex = oy *BYGex ¢ ) +BV =AML - 2D
- [nW!' + ! sin wt)sin ny. (1)

Introducing

and defining
f
W' =W, nl =T, a:E_zg,

equation (1) becomes

2@y,

]
r am ax 1 ay') + By (ax' ay') + pv

__A_[a}\'r' + i .0 _ 2% ]

!
s3 ax 3 ax'ay'2 ax'zay ) y’3

«W [1+ q sin t)sin nsy! (2)

or

- L i e v - . . —p——— e an
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w 8 a7 _ 87 py' aG_ , av B =
W 3t [ X7 le e (ax' + ayf)_+ W
. A 2%, 9% %0 _ 8%

- [1 + a sin 7] sin nsy's (3)

Now, since the term (1 + a sin T)sin nsyf is of order
unity*, and since this term represents the wind which generates
the velocities, it is anpropriate to choose a dimensionless
velocity which will also ﬁe of order unity. Hence we select a
non-dimensional term containing the velocity which is presumably
of order one. The term suggested by an inspection of (3) is
BV/W and we therefore put

V=ﬁ-v: =@,
- and U T

We shall drop the primes from the x' and y' coordinates
and work in the non-dimensional system henceforth, With the

definitions, ¢ = A/Bs3 and 4 = w/Ba equation (3) becomes

3[Vy = U 1o+ ylUg + Vy] + Vo= elVyy + Vypy = Uy = Upyy ]

- (1 + a sin t)sin nsy (4)
where Vy = 0V/0x, (Vy = Uy); = 02V/8x8t - 8°U/3yde , etc.

If we non-dimensionalize the momentum equations (3,22)
and (3.23) and the continuity equation (3.24) by means of the
above definitions, we must introduce a new parameter © and a
variable H defined by

_pnp
92%25’ H==
s

* As will be seen later, we shall choose a to be 0.2,
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The equations become

nsb.gg - nsy V + O|%§ =nseAU - (1 + a sin t)cos nsy (5)
T

nsd &V 4+ nsy U+ 8 - 4 \' 6
P y oy sed (6)
and (3.8) becomes
ox 8y at

Attempts to solve equations (5) to (8) in closed form
were unsuccessfuls We therefore resorted to seeking solutions

by a perturbation expansion in the parameter b,

Let 5
U = Uo + bUl + b U2 + eueo
V=V, + 8V, + 8°V. +
- o 1 2 [N N}
H=H 0. + 5°H
-— o + b l + 2 +... [ ]

Our formal procedure is to regard the coefficients Uy, U, etc.,
as coefficients in a power series in b,
Let us substitute the expansions into equations (i),

(5), (6) and (7)0 We have

b[Vox -+ ble + see = on - 6Uly - .’.]'L'

+y [on + ble + ese + Voy + bvly + ooo]

+ Vo + 8V + 000 = e[VOxxx + 8V ppy * oo

+ V + seo

OXYY + bleyy - on}w - bUlX){y - es e

- - L - e - . i
Usyyy = ®Viyyy ¢] - (1 + a sin 1)sin nsy (8)
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aU le18)
nSb[—-—- + b ——]-' + oo ]- nSY[VO + 6Vl + ooo]
ot ot
3H 8H ‘
-~ 0 1 — r
+9[-6?c—-+5-a—x—-+¢o-] —nS€A[U0+6J1+ooi]
- (1 + a sin< )cos nsy (9)
[GVO avl ] [ ]
NSV e + & = + o040 | + U, +83Uq + 4
- d e nsytUy +38Up N
9H aHl
G(-—y—- +d —a—y-— + 200 ] = nsed [VO + bvl + ooo] (lO)
U U ov av H 0H
—Q+6—"l'+'oo +—'—9+5‘-""“l+oaa —"b[: +6—-—1'+ot|]o
0x ox oy oy ot ot (11)

If we regroup each of these equations so as to combine
the coefficients of each powver of % , we have, upon retaining

terms in 6% and & only:

{y[on + Voy] + Vo = elVogux + Voxyy = Uoxxy = onyy]

+ (1 + o sin 7)sin nsy}+ JLVOX’U = Ugys *+ y[U, + Vly]

-U ]

b + XYY =0
1yyy (12)

V= eV - Vigyy - Ulxxy

oH .
{-nsyVo + 0 -&—9 - nseAUy + (1 + a sin 7)cos nsy}

au on
+ {ns ..6—9 - nsyVq + G-—-l- - nseAU }6 + e0e = 0 (13)
T

{nsyU + © a_}.I._ - nseAv } {ns -2 4 nsUl + O _;El--nssAV] He=0
(14)

raU aV aHO
*le e tE bt =0 (15)

bettlng each of the coefficients of & equal to zero we

have as the zero order equations for (12) and (15)
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+V U -U ]=V,=(1 + a sin T)sin nsy (16)

ervoxxx OXyy ~ ~OXXY oyvyy

Upx *+ Voy =0 (17)

and the boundary conditions
U,=V,=0 on x =0, x=r. (18)

With the particular wind distribution prescribed we will

also be able to satisfy the additional boundary conditions
V,=%— =0 on y = 0,1, (18.a)

We shall proceed to solve equations (16), (17) together
with the boundary conditions (18), (138.a) for the velocities
UO and VO.

Define a stream function

4
o=, U= - g (19)

so that (17) is satisfied identically, Then (16) can be written

edY =P, = (1 + a sin T)sin nsy (20)
a*( a*( )
where AA( ) is the biharmonic operator -—E-l + 2 +
4 9x ax26y2
9 5 ),
oy

Equation (30) is similar to the one solved by Munk [ 5]
and Munk and Carrier [6]. In the present case, however, the
non-dimensional time, T, appears as a parameter, so that our
problem corresponds to a quasi-steady problem,

Equation (20) together with the boundary conditions
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t =9, =0 on x = O,r
P =4 =0 ony=0,1 (20, a)

can be solved for v by applylng the boundary=~layer technique*

to the boundaries x = O,r. The solution is

-1/3
Y = (1 + a sin T)sin nsy“{-x + 1 = 51/3 + 81/3e(x-r)8

3 % 3€-1/3
-r)cos(-——-—2

. [(81/

) +

-1/3
AN

1/3
(V3e - I )ysin(e—mn) Je
RS V3 2 J(21)

From (19) UO and V, are found to be

r 1/3

U, = = ns(l +a sin t)cos nsy'i-x + T~ € + €

13, (xm)e T3

(o]
xs-l/3

~1/3 1/3 -1/3 -
+[(51/3-r)cos(K¥3§____)+(\/§e - ja)sin(x 3i§___)] e 2
3

{22)
(x-r)€-1/3
V.= (1 + asin t)sin nsy L— 1 +e

+ [cos(x 3; ) -41-(2]?e ‘ -'Vg)sin(f;égL__.)]e 2

, -1/3
~1/3 -1/3 7 -1/3 _ XE ]IP'
V3 (23)

The zero-order equations derived from (13) and (14) are

* The problem defined by equations (20), (20.a) is sclved in
detail in Appendix 5 by means of the boundary layer technique.
The method used in the remainder of this paper is described
in detail in that section, Munk and Carrier [6] used this
method for solving the steady problem in a triangular ocean.
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OH . = nsyV, + nseAU; = (1 + o sin<)cos nsy (24)

gHoy

- nsyU, + nseAV_. ‘ (25)

Solving for Hy, we have, (neglecting terms of order e),

®H, = (1 + a sin<t)(cos nsy + nsy sinnsy)( - x + r - 61/3)
+ (1 + a sin T)nsy sin nsy 61/3e(x-r)e-1/3
+ [(sl/3 - r)cos(z——ifziii) +
s xe-1/3
+ (V3 81/3 - _ég)sin(x 35—-—-)]e- ‘2 J(Z;)

First-Order Solution

From equations (12) and (15) the terms of first order

in & are found to be

e[V + V -U

1xxx 1xyy u Jov, =V, -U - YHOJT (27)

lxxy - “lyyy 1 0xX oy

Uy * Vly == H . (28)

The boundary conditions are again Ul = Vl =0 on x = 0,1,

In (27) and (28) the right sides of the equations pro-
vide the driving term as did (1 + ¢ sin T)sin nsy in the zero-
order equations We shall proceed with the solution by means of
the boundary layer technique,

For the interior solution we assume that the functions

are smooth and hence that the derivatives are of the same order
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of maénitude as the functions themselves. The terms multiplied
by € may therefore be neglected.

Let us rewrite equationsl(22), (23), and (26) as the
sum‘of two parts - one part, with subscript i, having the same
order of magnitude throughouﬁ the domain (the "interior solution');
the second part, with subscript b, sensibly large near the bound=-
ary and negligibly small in the interior, (the "boundary.layer

contribution')

1/3)

Uyqy = - ns(l + ¢ sint)cos nsy(= x + r = ¢€

rd

-1/3
Uy = = ns(l +asin v)cos nsy'{fl/3 e(x-r) +

- 1/ .
+[(€1/3-r)cos(_x_._%.i.__ Y+(V3 e 3_ ZIysinX e e

V. ==(1+a sin t)sin nsy

oi -
-1/3 x V3¢ 1/3
(___5.____)

-1/3 /3 . xM3

+ (2L . V§)sin(-x-—-%-€-—-—- e
V3

(x-1)¢ + [cos

+
Vop = (1L + a sin ©)sin nsy4e

OHOi = (1 + a sin T)(cos nsy+nsy sin nsy)(- x + r = 51/3)

1/ ("-r)e-1/3
®Hgy = (1 + asin T)nsy sin nsy9e 30

-

Xe

-1/3 -1/3
+[(el/3—r)cos(§j£§f__. )+(V§el/3-.j5:)sin(x V3e )e 2
3
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We expect the boundary layer thickness to have the same
order of magnitude in the higher order solutions as in the zero=~
order solution, viz,, 51/3. Thus, in order to find the first-
order interior solution, we neglect all the terms with subscript
b since they are negligible in the interior. Thus immediately,
vli’ the interior portion of Vl, is known and is (from (27))

Vli = - [VOiX - U01y - yHOi]T
=205 (x + 1 - 51/3)[cos nsy + (nsy-on®s®)sin nsy]

3
(29)

From (28) and (29) the interlor portion of Uj, U;,, can
be computed directly, giving

cos 2 1/3
Up, = - S95T [ X+ x(r ~ e {2nsy sin nsy +

+ (nzszy2 + on3s3 + 2)cos nsy ] + Cl(y,T)

where Cl(y,w) is arbitrary and must be evaluated by applying
the boundary conditions to the complete solution, l.e., inter-
ior solution plus boundary layer contribution.

Before proceeding with the boundary layer analysis we
can simplify equation (27) to some extents Near x = r,
Vo, = 0(e™Y3y, U, = 0(e3), and Ho = 0700(e™3),  Near
x =0, Vo, = 0(e~2/3), Uy = 0(1), and Hyy = 6~1o(1)s Thus in
each case we are justified in using only the contribution of the

-2/3 >>1 and 8-2/3>> O"l. As will be shown

\') term provided e
00X
later, when the appropriate dimensional constants are substi-

tuted, the error involved in neglecting the other terms is
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extremely small, Thus for all practical purposes, equation

(27), near the boundaries can be written

Vv -Vlb':V

-1
13, Gemrde 3,

~1/3
[(r€-2/3 - 23—1/3)cos(-x—-%—-) +

) -1/3
Te 2/3 x V3¢ 13 - xez } (31)

eV pexx 1bxyy = Yibxxy = Yibyyy ] OX7T

a cos 1t sin nsy{s

+

4

e sin(=—=——)]e
\/§ 2

Near x = O, the inhomogeneous contribution which contains the

(x-r)e-l/3

term e can be neglected since its effect is felt only
near the eastern boundary, l.e., near173= re Similarly, near

- X
X = r, the terms multiplied by e “Lg““ can be neglecteds Thus

for the region near x = O,

€ [Vlbxxx * V1bxyy - Ulbxxy - U1byyy ]- Vlb
- - -1/3
= a cos T sin nsy[(re 2/3—23 1/3)005(.{._3_8____) +
-1/3
-2/3 -1/3 XE
e sin(x \/56 )]e- 5 . (32)
\/g 2

Now suppose the x coordinate is stretched by substitut-

ing x =e¢XZ (k > 0) Then (32) becomes

¢ 1-3ky + el-ky 1-2k U

1bEE Eyy ~ ¢ Vibgey " v

lbyyy = '1b

k-1/3
= g cos T sin nsy[(re'2/3-2€'1/3)cos(.f__v.§_:€____)

g3 2
)je 2 .
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The term of highest order derivative in £ is matched

with the remaining largest term in the equation. Hence, we
- *

formally match et 3kV1bEEE with V;. Then k = 1/3" and the

equation becomes

- Vi, = acos T sin nsy[(re'2/3-2€'1/3)cos(E;/g) +

Vibzee
~2/3 -
+LE sin(jLzz)] e &/2 + 0(51/3). (33)
V3 2

The term V1b can now bhe expanded in an asymptotic series
in ¢ and only the first terms will be kept, Since the inhomo-
geneous term of (33) contains only exponential and trigonometric

functions, let us try a solution of the form

Vi, = acosT sin nsye 2/3{ cos( EVg)+V mn(.ﬁﬁ) e"E/2
(34)
0

where V1 and Vi are the first terms of asymptotic expansions

and are to be determined.
If Vqy as given by (34%) be substituted into (33) and
sin
if coefficients of _gg Lfﬂli) be equated, two simultaneous differ-

ential equations with constant coefficients results

3 0 0 3 V =0 3V3 40 - 1/3
-3 15 -3 Vige * Viggg R Vg + 552 Vg =T - 26
(35)
3V3y 3 v" 3 So 3 w0 =0
2 V- 52 Vi - 3 Vg - 3 TRee + T "5 G¢

* The fact that k = 1/3 indicates that the thickness of the
boundary layer is of the same order of magnitude in the zero
and first order solution, as was anticipated.

— e - e — e e e iae - . rompmane —
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Particular solutions of (35), (36) are

V?_=-—--——-el/3-r5’ "‘7?1)_.—_--——------—-—351/3"r

3 3V3

The homogeneous solutions may be derived by letting

Vi = aeM, TO = BeME,

0
1
Then (35), (36) become

A(-%x-%x2+x3)-3[3\fx 3V3 AN1=0 (37)

A(i2‘—/—-3- x-%@xz) +B[--g->\ -%x2+x3] = C. (38)

Hence, since the determinant of these two simultaneous

equations must vanish, we have

2
W =322 =307 48 (x-a22 o, (39)

The roots are

3 - i
- 0,0, 3 +2\/§i y D 2V§

, Y31, = V31 (40)

Then,
1/ 3+ V3 V3ie 3 -\/51E - V3ig
V‘; = 1-3—3-225 + Ase 2 E+ Ase +A3e 2 + Aye + Aq
1/3 3+ V31 Viie 3314 Y
-7 AN —5——= - V31g
v‘i = .:.3.3&__3_.. {+ Bge 2 + Boe +Bye 2 By, +B) .

Hence, from (34)

Vlb = a cos7T sin nsy € /BJ cos( )[E_B_—;;.q. Aze‘/31€+ Ake"ﬂigAl]
V3 Ve -V
+Sin(v-g)[3e Z¢ +Be +B, e +B, 1 Fe™¥?
3 \/' 2 n 1 j‘

(%1)

e ——— e o

e e it
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where we have set A5 = A3 = B55= B3 = O since the contributions
of the terms with those coefficients do not tend to zero as
E—> @,

When (37) and (38) are used to get a relationship be=-

tween the Ai and the B then the final form for Vlb near x = 0

i)
is found to be

5/ 1/3
V. = a cosTsin nsy ¢ 2/3‘{05——7—:-?§+ Cz)cos(zgjL)

1b 3
81/3 -7 /2
+ (;L__..__.__ £ + C3) sin(ZZJL) e 4+2)
3V3 e
where C, and C_, are arbitrary functions of y and v and must be

2 3
found by applying the boundary conditions to the complete solu=

tione
In a similar manner, if we make the following two sub-

stitutions for the right (eastern) boundary
h
(x -1) =e

h=1/3

-l/3eT]€ [Vg + aoe ] ’

Vlb = & cos T sin nsy ¢

*
we find that h = 1/3 and

, -1/3
Vi, = @cosT sin nsy € [ g + Al(y,'t)]eq ]

We have used the fact that V,,~—>0 as n— - o, (As stated in

the appendix, 1 ->« @ when the boundary on the right is under

consideration, since the boundary layer solutions must become

* The same remark applies to the value of h as previously made
for the value of k.
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negligibly small as the distance from the boundary increases,
l.e., as nor x decreases.

If the three contributions (29), (%2), (43) to the com-
plete solution for V, be added, the final form for Vl is

vy = LCOS Ty 4 p = 51/3) [(y2ns + 0n232)sin nsy + y cos nsy)J
e
} -1/3 ~1/3
+ g cos tsin nsy e 2/3 (-l—-'-—g—‘-':———- X + Cg(Y))cos(-}E—V-z—E-—)
-1/3 -1/3 ] - xe~1/3
+ (=%t x + Cqf ))sin(-x-—v-z-g——-)}e 2
3 \73 3 y 2
-1/3
-1 - (x=1)e€
+ acosT sin nsy ¢ /3 {RL-S-—I' € 1/3 + Al(y)}e .
- (L)
By means of the continuity equation we then find
U, = - _q_c_g_s_l [2nsy sin nsy + (y'2n2s2 + 2 + en3s3)cos nsy]

1/3) l+cC 2/3e(x-r)fz'l/3

2
[- %—- + x(r - ¢ 1(y) - —C—‘—Cg-s--'f—nsy sin nsye

3 ] (x-r)e=1/3
e

@ cos T ns cos nsy[A)- % +{x=-7)e

-1/3
3A Ko
- a cos T sin nsy Ey—l e(‘{ r)e - 9.~.9~8_§£- nsy sin nsy °
-1/3 1/3 -1/3 - XE
. 1/3 2/3 x V3e e’ . xV3e ==
[(re - 2e“" 2¥cos( - ) - sin(E )Je
1/3 2/3 -1/3
-2/3¢, 2xe £
~ @ COS T ns cos nsye (= - IX xV3e "~
y { 3 3 + 3jcos( 5 )+
1/3
2/3 1 S axe -
+ (& - _Ix _ 2rs /3 )sin(x\/_ ]e 2
Vi 3V3 3 \/'
-1/3 1/
+ acosT & <L(C2 +\3 C )sin nsy cos(?ﬁ.[:if_j) +
-1/§

-1/3 -Xe_'°
+ -\V3c )sm nsy sin (-—-B——- 2 (45)

e prm— e o
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The arbitrary functions of y can be evaluated by means

of the boundary conditions Ul = Vl

O on x = O,re We have

2/3 > .22
sin nsy C, = §-=-—g-€—-—-[(nsy + 6n“s°)sin nsy + y cos nsy] (46)
52/3 2 22
sin nsy 4, = 5 [(nsy® + 6n"s®)sin nsy + y cos nsy] (47)
Cq = .Q_C-g-ﬁl{[Qnsy sin nsy + (y2n2s‘2 + 2 + en3s3)

—y

2
* cos n.sy][.l.’é.. - rel/3 v e2/3] -'82/3(9%-5-' + 1)cos nsy}‘ (4+8)

sin nsy C, = —\/'31:'—5{[291/3(y2ns + ?12-5 +on?s?) (rel/3 - 12 L 2/3)

1/3
+ 28 - 286 _"qin nsy + (Sy cos nsy - -t sin nsy»)r52/3 -
3 3 ns
2
- (9y cos nsy - %l—g sin nsy)e /3+(r 52/3-5)(y2ns+0n252)sin nsy g

(49)
The first-order contribution to H can be found from
equations (12), (13). The first order equations are
8U oH

o - + ___]_- 8
ns rre nsy Vl e == n~=e:AUl

it

"

ov oH
ns —L + nsy Up + @ 'é_y; nseAvV

ot 1

from which Hl is found to be

H = - Esa_gﬁs_'”_{[(ens + y°)cos nsy + (y3ns + yen2s°)sin nsy]*
e

* [%(x‘2 +1°) 4+ (81/3 - r)(x + 51/3) 1+ ?195- cos nsy +

2/3,0ns y sin nsy , cos nsy
€ _ + +
( 3 + 1)( — ) )
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: - 2/3 1/3 -1/3
+ g__c_go_u nsy sin nsy e 2/3‘{[’3 - 2rg - IX ]sin(Xﬁe )
V3 3V 3V3 2
1/3 2/3 -1/3 1/3 V3
+ [(-'g - 253 )x + = ]cos(x :236 ) - 52 [(02+ ‘/'3'(33)003(-)2—\,%3—)
- xg-l/3
+ (Cq - V3 ¢,)sin( )]:}e 2 +-£L{§L§JE nsy sin nsy °
' -1/3
: {;% (x - r -3y V3, Alj}e(x-r)e : (50)
The terms U1 and Vl do not satisfy the boundary con=

8u,
ditions Vy = E;l =0ony =0,l. We must recall that these

boundary conditions were chosen rather arbitrarily as being
plausible ones for the type of wind distribution specified, and
the y dependence of the zero-order solution was accordingly
chosen as sin nsy., We cannot expect such a y dependence to
satisfy all the conditions for each set of equations. The fact
that U; and Vl do not satisfy the boundary conditions does not
seem to be very serious since we do not really know what con=
ditions are appropriate.

If we next consider the equations resulting from equat-

ing the coefficients of 52 to zero, we obtain from (8) and (11),

e[V +V -U

2XXX oxxy ~ U2yyy ] - Vo = (le - Uly'yHllc

U2x + V2y = - Hl’t'

In the boundary layer, near x = O, le is of order e-l.

Thus we can expect V5 to be of order e'l in that region. By a

similar argument, we can expect V3 to be of order e'u/3, V), to

-5/3

be of order e setce If we therefore write out the series

——————— e e
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2 3
V=Vo+bvl+bV2+bV +6)+V)++ooc

3

we have in terms of orders of magnitude near x = 0,

V = 0(6-1/3) + 68‘1/3 0(5'1/3) +

+ 625'2/3 o(e'l/3) + 3¢l 0(6'1/3) + aes .

-1/3

or factoring out the O(e ), we have

Vv = 0(5-1/3)[1 + 65'1/3 + (de )T + sae e

The perturbation scheme may be expected to be valid
provided 66'1/3 ¢ 1, We can expect a falrly good approximation
from only the first two terms provided the more stringent con-
attion de~Y/3 << 1 1s imposed, If 65-1/3 = 1/5, the error
involved in neglecting the third term is no larger than 5% of
the first term.

For yearly variation of the wind, pe™1/3 = 1/6. Hence
we shall keep only the first two terms of the seriess It should

be noted that o determines the magnitude of the effect of the

perturbation but it has no bearing on the validity of the ex-

pansion,

Numerical Example

In order to discuss the above solution, we shall pre-

scribe numerical values for the constants of the problems Let

"

= 645 x 108cm 2 x ].O“ljcm"l sec~L

5 x 108cm D

H
(-
!
oW
"

5 x 10hcm(C = 200me, d = 600m, )
y

o0
It
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-1%*

=5x 107 cm® sec™t W= 2 X lOnVSec

=
i

1 -2

2n/s WY = 0,65 gm cm” — sec™< ,

.
]
il

The magnitudes of r{y s, A, D correspond roughly to the
Atlantic Ocean parameterss The value of B is chosen so as %o
; give the best approximation to the Corioclis parameter in the
latitude of Cape Hatteras. The equality n = 2n/s corresponds
roughly to the east-west components of the trades and the west-
erliess The value of w corresponds to yearly frequency of the
wind variation and W! = 0,65 gm em™Lsec™? is the value used by
Munk [ 5]} for the wind stress.

Then the dimensionless constants have the values

b =% - 2 x 10‘3 ns = 2%
Bs

- ngD
e = <A =2x10 6 o= g = 0,123
Bs3 p=s3
I'=103

Also T’ has been chosen so that
Q= 0020

The results for this numerical example are shown in

Figs.e 2 - 6.

In Figs 2 the non~dimensional, north-south component, V,
of the mass transport is plotted against x!' near x!' = O for the

| value y' = 0,25, The region of large V corresponds to the Gulf

* Corresponding to an annual period for the wind fluctuation,
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Stream and the section adjacent to the Gulf Stream, with nega-
tive V, corresponds to the off-shore counter-current.

For the Gulf Stream, the extreme values of V are in
phase with the extreme values of the wind, However, for the
points between the maximum and minimum values of wind strength,
the transport lags behind the wind,

During one cycle of wind variation the following result
is found, The transport and wind both have maximum values at
T = /2, Immediately after = = m/2, the wind begins to decrease.
The transport also decreases but it lags behind the wind. At
T =n the wind has reached its mean amplitude and the lag of the
transport i1s greatest, viz., an interval of 9 days* elapses
between the time the wind reaches its mean amplitude and the

time at which the transport reaches its mean amplitude, After

T =7, the transport begins to gain on the wind until at

il

T = 3n/2, the two are again in phases The wind and the trans-
port now begin to increase and the transport again lags behind
the winde The maximum lag is reached at = = 2n at which point
the transport begins to catch up to the winds They are in phase
again at v = 5n/2. This cycle is repeated indefinitely.

The discussion presented here is based on the assumption
that the first two terms of the series represent,in a sufficient-

ly accurate manner, the complete solutions One result of this

assumption 1s that transport reaches its maximum value at ©t =n/2,

* It is shown later that the value 9 days is independent of the
specific value of the frequency for slowly varying windse
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The perturbation contribution vanishes at that instant since
its coefficient is cos g« Thus, no matter what the value of
(essentially, the frequency), as long as it lies within the
1limits necessary for the validity of the above method of solu-
tion, the maximum value of the transport will occur at t = mn/2,
m=1, 5 9 eses 4 and its value is given by 1 +a times the
steady transport value.

The interval of 9 days between the time at which the
wind reaches its mean amplitude and the time at which the trans-
port reaches its mean amplitude is also independent of the fre-
quency. To show this let Vo = (1 + a sin 7)Q and V; = aL cos T,
Then V = (1L + a sinT)Q + da L cos T« Since the mean value of
the transport is V = Q, we can find the time at which this occurs

by setting
(L + a sin ©)Q + daL cos T = Q

or
L
tan Tt = = .
q

Since t 1is small, we can write tant # < and therefors

which is independent of frequency anda .
It is apparent from Fig. 2 that the out-of-phase effect
is of relatively greatest importance in the counter-current

rather than in the main streams The graph shows the various
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effects only up to the eastern edge of the counter-current at

x!' = 0us1ls For x' > 0,1 only the mean position of the transport
is plotted since the deviations from this mean positinn are very
small,

Near the eastern boundary of the ocean (Fig. 3) and in
the counter-current region (Fig. 2), the absolute magnitude of
the extreme values of the transport (which is now negative) are
also in phase with the extreme values of the wind and the trans-
port lags behind the wind at all other times.

Figures 4, 5, and 6 show surface contours™ for the
southern half of the rectangular ocean for == 0, n/2, T, 3W/2,

** and

The contribution of &H; is very small throughout the ocean
has therefore been neglecteds Thus the graphs for 7 = 0 and

T =7 coincides This result is based on the assumption that D
is 500 meters in thicknesse If D were increased the above re=
marks would be even more appropriate. If D were decreased; the

contribution of the perturbation term would be larger and we

would therefore have to account for ite The value of the first-

* If we define the thermocline as the surface at z =T = d/2
then the contour lines of Figs, 4, 5, and 6 multlplied by
-200 represent the deviation of the %hermocllne from its
equilibrium position at z = = C - d/2 = - D,

** If for any of the variables the magnitude of the coefficient
of b in the perturbation solution is of the same order as that
of the zero-order term, the coefficient ® = 0,002 renders such
a correction negligible, Throughout the present example, the
only sizable contribution of the out-of-phase term is Lound
in the north-south transport V in thi boundary layer where
the function V increases by order e=~1/3 However, Hy and Hj
have the same order of magnitude throughout the ocean so that
the first-order correction H; can be neglected throughout,
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order velocities would also be altered when © is changed., We
shall consider several values of € when we discuss the deflcction
of the thermocline in the steady two-layer ocean,

The meanmass transport of the Gulf Stream (corresponding to
the steady problem) is 26.6 x 10% metric tons per second as com-

6

pared to Munk's value [5] of 36 x 10° and the observed value of

72-80 x 106 metric tons per second., Munk [5] used the east-west
component of an empirical wind system and the discrepancy is
therefore due to the difference between the two wind systems,

At the time of maximum (minimum) wind the transport is 20% higher
(lower) in accord with the remarks made previously in this sec-
tion. In the counter-current the steady mass tranport is %.,61 x
106 metric tons per second,

The difference between the computed and the observed
values is not surprising when one considers the many idealizing
assumptions made., Such features as the straight coast lines;
the simplified theory of turbulence used, the neglect of the non-
linear terms, and a more realistic stress-effect of the wind on
the water could well change the quantitative results by a factor
of two or three,

The problem as stated and solved by the above method
gives no sensible east~west variation in the position of the
Gulf Stream, but a careful investigation of the eastern boundary
of the Gulf Stream shows a very small narrowing of the stream,

How well such a result agrees with field evidence is uncertain

since our solution yields no inshore counter-current.

. - e e caupe _— S e o e _
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It would be interesting to ascertain how well our pre-
dicted results agree with observation; specifically, if the mass
transport of the Gulf Stream responds as indicated to variations
in the wind and 1f the lag of the transport is independent of

the frequency.

5+ Methods of Solution for Problem 2, The equations
(3.25) - (3.30) are non-dimensionalized below in order that
boundary layer theory may be employede Using the arguments of

Section 4 for the method of non~-dimensionalizing, we have

gW

x = sx!, A= —— y
s PP

Y‘_'Sy"
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ou aH n
1 - 1 s\ 0Hj
SO ez = V, = = © - :
nsd 3 nsyv, [Hl aH2] 3 +

+ nseAUy = (1 + a sin t)cos nsy (1)

av ol >\ 3H
1 Us = 1l . ns - 1 v

8T oy
au; oV
——l. -—-—l‘ = = —a- -
% T oy Vo 1T ol (3)

b =5 = yVy = - fc—— (Hy + DHy) = NHp & (Hp + bHy) +efUp(k)

5 E;g + YU, = -JL-_- (Hy + bHy) = MHp 2 5 (Hy + bHy) +eAV,5(5)
au av oH
2 ., SV2_ .y 22,
T + 5y = ty) 3 (6)
Steady Wind

Let us first treat the case of a steady wind, i.e.;
a= 0 and &8t =08/8t = 0, and let us assume that, in the case
of steady motion, there are no velocities, and hence no horizon=-
tal pressure gradient, in the bottom layer. Edquations 4) =

(6) are then satisfied immediately by
Up =Vy =0y, Hy==4H (7)

and equations (1) = (6) become

- nsyVy = = 59,;[91*1 + o ﬁi] + nseflU; = cos nsy (8)

nsyU; = = % [ eHy + ask Hi] + nsedV, (9)

= 0, (10)
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Differentiating (8) with respect to x, (9) with respect

to y, and substracting, we have

e[V + V - U

1o ¥ Vixyy T Uiy T Uiyyyl = Vi = sinonsy (11)

which 1s equation (4,16) with a = 0.

Thus the transport distribution for the steady case is
precisely the same as it is in Problem 1s The difference in
behavior enters into the non-steady case when the motion of the
interface affects the motion of the water in the top layer,

If we set a= 0, then equations (4,22) and (%.23) are
the solutions for the present U; V;e Similarly with d = O;
from equations (8) and (9) above

ns\ H2

'-2-.5—' 1+GH1=OHO

where H, is given by (4s26)s Then Hy may be written

i

o + O\ + 22§x H,
Hl = = . (12)
nsh
b

However, if 2ns\ /@b Hy < 1, then Hy may be written

approximately

6 + [0 +2§_’\Ho]
H % - =H. . (12,a)

1 ns_L (o}
b

H2 can then be evaluated by

o= o1
[12-—"—b'Hl. (7)

If the dimensional constants® which were uscd in Problem

* The depth (Dj=Dy) is given the same value as D in Problem 1,
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1 are used here, and if we put b = 4005, then (12,a) is correct
to 0(10"2). The streamlines and the thermocline, Hy are shown
in Figse 7 and 8,

In Fig. 8 it can be seen from the contour lines of the
thermocline that there 1s not much deviation of the thermocline
from its equilibrium positions In particular, if the initial
depth be 500 meters, the thermocline does not fall more than 35
meters below its average depth in the southern half of the ocean.

In checking our results with observation, we find that
quantitatively this result is in poor agfeement with fileld evi=-
dence, The definition of the thermocline in the real ocean is
vaguey however, and hence the two parameters @ (corresponding
to the average thickness of the top layer) and b (the density
difference) are not clearly determineds In fact, they may vary
over a wide range giving rise to a very considerable variation
in the deflection of the thermocline.

In Fig. 9, the vertical cross section of the ocean at
y' = 0425 1s shown for four combinations of © and bs If we
consider the curve with @ = 0,0492 (D = Dy = 200 ms) and
b = 040025, our result is in good qualitative agreement with
measurements of the thermocline off Chesapeake Bay [10]), Quan=
titatively, the values are out by a factor of (approximately)
three,

Our solution shows a tendency for the thermocliné to
approach the surface in the northern part of the ocean (Fig, 8).

As a matter of fact, if € and b be chosen small enough, the
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interface lies above the free surface§ Such a result is absurd,
of course, but the tendency of the thermocline to approach the
surface in the northern part of the ocean is clearly indicateds
This fact agrees with observation since the thermocline actually

reaches the surface in the north.

Non=Steady Wind

In the treatment of the non-steady, two-layer problem;
we shall neglect the terms with coefficient M in equations (1),
(2), (4), (5)s For the steady problem, if © and b are chosen
appropriately, 1t has been shown (equation (12,a) that the error
involved herein is small, '

Two methods of attack have been applied to the lineariz-
ed equations of (1) - (6)s Our first procedure is that used
in Problem 1, viz, a perturbation in ® followed by a boundary
layer analysis,

The difficulty in the first method of solution arises
from the fact that the quantities with coefficient ¥ are no
longer small, i.e., the magnitude of the terms is no longer
governed by b, In particular, in the continuity equation (3),
the term on the right hand side has magnitude ¥/b H; (based on
the steady solution). 1In the interior of the ocean where U; and
Vy are O(1) and Hy = 0(9'1), in order for the perturbation in &
te be valid, we must have & < < 1/6b. UYith the dimensional con-
stants of Problem 1, this means & < < 10'“. Such a value corres-
ponds to a wind period of one hundred years or more.

If the above results were the only objection to the
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analysis, the problem as defined thus far might still have some
Qualitétive value, Unfortunately, for such a small value of b,
the terms in the equations of motion which involve a time=-
derivative become very small, and we are wholly unjustified in
neglecting the non~linear terms while still retaining these
time dependent terms.

In spite of these objections, the analysis fcr Problem
2 by the first method was carried through but the results were
not computed numerically. The analytical results are listed

in the next few pages.

H H,, + dH

Up = Uyg + 8Uyqy Uy = Vi +8Vy,, Hy =Hj, 11

+ dU + bH

U, =U Vo = Vo + 8V, H, = Hy

2 20 21? 2 20 21

where Uyy Voo = O by equation (49), Uyq, Vy4, Hy, are given by
equations (3+22),(3.23)and(3+26) and the remaining values are

given below,

1/3 25 pevt v
Vll = .Q_C_g_ﬁ_l(-x + I - g )[(On s + _,By_.)sin nsy + E cos nsy]
-1/3
+ a cos T sin nsy[(e” 2/3_ nsy nsy |y x 3 + A]e(x-r)s
-1/3

1/
)x cos -——1—————3)

+ o cos T sin nsy e-2/3 {}% -
1. -1/3
2
(1-re k?s gin (V3 & 3~f = - acos T2 sin nsy o

<+

xe /3
2

-1/3 -1 -1 -
. (3Lcos(x V3 e — (2re /3 -1)X.sincX € /%}e

)+ )
13 2 3 73 s
-1/3, _ =Xg -

3 2
- -1/3
+ a cos T sin nsy{cz cos(Z 5 ——)+C3sinQ§J4§5 %e e
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2 2.2,2
U = - g—C-Q-g—s—i“-(- 3’2— + Xr - xe1/3){(9n3s3 + R—Ssl—ié)cos nsy

P!

+ zbl;nssin nsy} + a cestC(y) - ﬂ%%é"ﬂnsy sin nsy{€2/3€(x-r)€ 3
13 A3 s RV N Th

+[=l‘-\/i§-—sin(2<__\&§_.__)+(re 3-2623)cosAg ) )e” T 2

. 2. 1/3
- acosT 5%; {sin nsy[(s'l/3- nsybg )(Z=T = 51/3)

3

oy ~1/3 . -1/3

+ el/BA] }e(x T)e - q COS T 5% sin nsy[(.'_}f.%_

- — -l -
+]- 2LE 1/3)sin(x Y3e /3)+(xre 2/3 _ 2xe'1/3 -1 '
3 V3 2 3 3 3 cos
-1/3
X 38-1/3 1. ﬁé_'— 3 (nsy® . 2/3
. (—-—-—-72———-) ]je + @ cos ’E..a_s.r. =% sin nsy[(2“3
1/3 1/3 - -1/3
- LE Xe _ Xr XV3e y
g + 85 - JPleos(E5——) s
-1/3 _xe
+(§_€_];/_3+Xel/3_£) sin (2{(\/-’;5 )]}e ..&.2___ |
3 37 3 2
1/3 _ -1/3
-dcosT .5_5._ .(% sin nsy[( V3 C, - C3)sin(£ﬁ_2€_.__)
_-1/3 . . x£Y3
- (V3 03 + Cz)cos (ﬂizi__)]‘[e 2 .

b
~

3
1 ) _ 1 1 2,12 - 1/3 1/3 nsy-
R 5[ §(x 4+r)+(r=-€" ) (x+e'°) ] (b
cos nsy

e 4

3ns

2 ,
+ anszy)sin nsy + (ens + %—)cos nsy}+

. 2
LY sin nsy £ /3[#},2005 nsy - 1lly sin nsy _ 11 cos nsy

3 3pe ns n®s?
2
+ nsy3sin nsyl] +y sin nsy {(5'1/3- nsyggl/:%)(z; - g_el/3 y
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-1/3 .
N 81/3A}e(x-r)s +y sin nsy {'[(_g - 1/3) n;g
. - =1/3
ze 2/3] £ ain (x /3e ) [I'e-2/3 ) 2&:-1/3
3 /3 2 3 3
2 1/3 = =1/3 -1/3
nsy<,p € xV3e 4 _ 2re
+ 55 (3 3 )] x cos (-——-—'mz—--——) [L 3
2 1/3 -1/3 )
- nzg = ] sin (xV/3e ) +[ =X (”‘1/3 - 282/3) - 1] cos »
3 V3 3 be 3 3 3
\/—6-1/3 - ———-—XSTI ’ 1/3
. (3{--——3-5-——-) e 2 - -E-é—- y sin nsy [(C + /3 C ) cos °®
/313 ~1/3 - _;;}ﬁé
. (-—_—_ée_._.) + (03 —\/3 C )sin(-}-c-——3-‘l-———) ]}e 2 .
Vy = .9..%%5__’.‘7 (y cos nsy + nsy251n nsy)(x - r + 81/3)
-1/3
2
+ acos 7T ng;; sin nsy{x 5 I+ Aa(y)} (x-r)e
2 = =1/3
+ 0 cos 'tn;% sin sy{% cos(_’E_\Q_E___._)
1/3 1/3 -1/3
$(RRE D 1) X gy (XV3e T ‘/38 )},
3 V3 K-k
= =1/3 c1/3 ) = =3
+ q cos ¢ 3in n.;y{ 22cos(£l/_3i___)+c325j_n(£f3.;___)}e 2
U21 = 3-—9-8—%—'5(- P- Y rx-xel/3) [(2+y°n®s2)cos nsy+2yns sin nsy]
C 2 2/3
+ 0 COS T 21(32 - qcos 'c.a% Eg-%- sin nsy [(—2-6—3-—
1 - =1/3 -1/3
= =1/3 1
+ (61/3 - /3

) X sin(ujg J+(& - -%) X cos *
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e/3e3 Y - xe -
C =) ]}e .

- acos T -2 q81/3 sin nsy .
oy 2 eb

- =1/3
* [(V3 Opp - Cyp)stn (E¥3

-1/3 xa~1/3

) = (Cphpy + V3 032)cos .

1/3

- ) 2
. (& 3; —)]le 2 - acos T _a_jnsy sin nsy(¥=Izt =

ay {, ©b 3

_y.~1/3
+ A2)61/3.%e(xr)e .

L
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~1/3 -1/3
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V3 33
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+ 43 gc T{[l(x +r2)+(1/3-r)(x+ el/3) ]

[ yn282

¢ sin nsy + ns cos nsy ] = %(cos _;1_3;_5_ + y sin nsy)}

+ S5t (% + Bs) [1 (x° + r2) + (e Y3 Lpyx +e/3)7 0

3

* [ nsy”sin nsy+y2 cos nsy J +“°°ST(l S) .

be

11 sin nsy _ 11 cos nsy]

[ ] 2 3 -
[ 4y“ cos nsy + nsy2 sin nsy = 23

The functions Aghy,y C, Cis Coy C3, Cony 033 are determined

by applying the boundar: conditions U; = V1 = U2 = V2 = 0 on

X = O’r.
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The second method of attack on the non-steady two-layer
problem consists of separating the expression for the winde
stress into its éteady and periodic parts, i.e., (1 + a sin 1)
COS nsy = cos nsy + a sin a cos nsy, and treating each problem
separately, This method of solution was also attempted in the
one~layer problems The resulting equations could not be solved,
however, without recourse to numerical methods. In the present
case, we hope to make use of the smallness of the parameter b
in seeking a solution,

In equation (3) the right hand side may be approximated
by 8/8v (-~ Hy + allp)» 8/97 (- Hy + Hy)~ 0Hy/37,

The steady problem with cos nsy as the wind-stress term
has been solved previously. For the time-dependent problem, we
write

_ = L =_ 3
H, = OHy, H, = ObHy, I:a, Y=o

Then, with the time-dependent part of the wind-stress only, (1) =

(6) become
a oH
nsb.s_l - nsyV; = = ?El + nseMJ; - o sin T cos nsy
T . .
a7, e’ﬁl
nsb —a-:c- + nsyUl = ew Eyf-' + nSSAVl
i IO -
ox oy ot
au i, of
b _5___ - yV2 = - 4 (-a-x—- -&—2-) + EAU2
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av BH
2 !
d =32 + yUn = = & + —2) + AV
Py y 2 ( 3 ) el )

-a—tl2-+-a-‘£g=-?_a‘.}jg
8x oy at

Next let us write the wind-stress as the imaginary part
of aeiT cos nsy, Then if we take only the imaginary terms in
the remaining parts of the equation, the results will be the
same as those above,

Define
U = qelTy (x,¥), V = ei (x,7), By »=aeiTh, .(x,y)
1,2 T a8 Uy piXy¥Iy Vi,0 T a® "V otXy¥)y Hy 0TaeTy HlX,¥ie
The equations become

1 nseAu

I
|
%I%

ingbuy - nsyVl = - €OS nsy

1

- ohq
insbv1 + nsyu; = = a + nseAvy

g, + 1y iyh2

- - ,0h ah
13up = ¥, = = B (=% + =5) + cau,
- dh dh -
16v, + yu, = = L (3§l + syg) + eAv,
uzx + V2y = - iYh2 (]

The above equations must be solved for the six unknowns.
The difficulty arises in trying to match the boundary layer con-
tirbution with the interior solutions To conserve space, we

shall not give the entire analysis here, but shall confine

p—— e B
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ourselves to the determination of the boundary layer contribu-
tion and to an indication of the ensuing difficulties.
Carry out the following three steps:
(a) Let x = 51/3{, iees, stretch x coordinate near x = O.
(b) Substitute vy , = /3 '61,2; y = /37,
(¢) Keep the leading terms of the equations,

The equations then reduce to

nsyvy = h

1g
1/3

insde vy + nsyup

it

- hly + nSV1§§

Upg *+ Vyy = ivh,

-1/3 _ T

ft

Upp + Voo = = ivh,

Eliminating all the unknowns except h,, we find

Paggge = Pogg = Mog t D hp =0

where
b, = 1873,

1 L = iyyz(ns + %) .

Solutions are

4 D, E
h2=ZCiei
i=1
where the Dy are the roots of
ot - 302 -D+1L =0,

1
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They are
- (% 5, +2A+2B) i\/(% b1+2A+2B)2 - 2(A+B --65 +2)
Dy,2 = .
L 5 40n+0B 4 \/(’.t 5,4+24+2B)% - 2(A4B= 3 - 2;
D., = 3.1 -~ V31 3
3,4 2
h e
where )+ 3 \/7 3 3 1/3
5L 55 3 46 L & 21
=1 1.1 - rd h A ! PR Ko |
P § e e Y Ry SOEAATY O I - Al

La.L %
1 1~
"{'§+ 3

= W

o
!

n

P 3 13
b 4y.L 87 .2}
- \/“' ['3]‘()'"14 + *gl) ]34-[-% + 1 - ~—l] .

7 3 27

The above solution for h, must now be substituted into
the previous six equations and the boundary layer contributions

for u 59 hl > can be derived by keeping the parts which
b b

y V
1,27 1
— 0 as §—>mw. If the interior and boundary layer solutions
are added, the Ci can be evaluated by means of the boundary
conditions Uy =Vy =Uy, =V, = O on x = 0,r,

Practically, this is an almost impossible task, and
numerical methods must be employed for the whole procedures
In view of this fact, nothing is gained by the analysis and the

entire solution might as well be carried out numerically from

the very beginning.
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Since we have been unable to arrive at a useful solu-
tion for the non-steady ocean circulation without assuming
negligible velocities in the bottom layer, we have no assurance
that our analysis is wvalid, Reliable observational data which
might guide us in this matter are not availlables We may per-
haps gain a little more confidence in the results of this inves-
tigation by the following considerations.

For the formulation of Problem 1 it was assumed that
the velocities, and hence the horizontal pressure gradient;
vanish in the bottom layer. This, together with the hydrostatic
pressure law, immediately led to the conclusion that the thermo-
cline responds instantaneously to any motion of the free surface.
Naturally, this can hold, if at all, only for sufficiently
slowly varying circulation.

Some investigators are of the opinion that the very
opposite situation actually exists, i.es, the thermocline re-
mains esgentially fixed and does not respond to wind variations
of, say, seasonal or annual periods. This 1s perhaps a more
reasonable assumption because 1t 1s based on the idea that the
frequency of wind variation is much greater than the important
frequencies of free oscillations of the bottom layer.

Let us assume, therefore, that the shape of the thermo-
cline remains roughly fixed in such a manner as to result in a
vanishing time-average horizontal pressure gradlient in the
bottom layer. That is to say, the thermocline adjusts itself

to the mean wind distribution so as to glve zcro pressure
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gradient for the case of a steady wind hav;pg this mean distri-
bution, If we now have a time-dependent wind, we will have
non-vanishing pressure gradients in the bottom layer as a result
of changes in the free surface shape. The resultant velocities
in the bottom layer will tend to be uniform vertically (except
as influenced by friction) provided the bottom layer has fairly
uniform density so that the pressure gradient is independent of
depth.

Suppose we have a two-layer ocean and integrate over the
top layer onlys If we make use of the assumption of a station-
ary thermocline, and 1f the effect of friction at the thermo-
cline on the transport in the top layer is negligible, then the
resulting transport equations are essentially the same as those
attained in Problem 1, Hence, the distribution of mass trans-
port obtained in Problem 1 may be expected to be valid now;
provided it 1s interpreted as the distributions of transport
above the thermocline, Since this is the transport usually

measured, we may still hope that the results are useful,

6, Conclusions. If the velocities in the depths of
the occan are negligible, then the horizontal pressure gradients
are also negligible and the thermocline responds immediately to
a change in the free surface height provided the hydrostatic
pressure equation is valids For such a case, the following
results avpear to be valid (within the framework of subsequent
approximations made 1n this report):

(1) For a varying wind with a period of three months or

- — B I e ¢ e o wm g
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more, the mass transport through the Gulf Stream responds to
the wind but lags behind it at all times except at the instants
of extreme wind variation when the two are in phase.

(ii) The maximum lag appears when the wind is in its
mean position and an interval of about nine days elapses between
the time at which the wind reaches its mean value and the time
at which the transport reaches its mean value, The actual
length of the interval, i.e.; nine days, is independent of the
frequency of the wind variation,

(iii) The wvalue of the maximum mass transport through the
Gulf Stream does not depend on the'frequency but only on the
maximum strength of the winde.

(iv) The Guld Stream does not undergo any noticeable east-
west shift nor 1s its width altered because of the wind variation.

For the steady two-layer problem, the streamline pattern
coincides with that of the one~layer case. The computed steady
position of the thermocline can be made to agree qualitatively
wifh the position of the observed thermocline provided the two
parameters (a) the thickness of the top layer and (b) the density
difference, are chosen appropriately.,

At the outset of our investigation we had hoped to solve
the linearized, non-steady, two-layer problem with no a priori
assumption concerning the vertical distribution of velocity,
However, we were unsuccessful in doing so except for the case
of a wind with a period of oscillation of 100 years or more,

For such a low frequency, the retention of the time derivative
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terms in favor of the non=linear terms seems wholly unjustified.
The only conclusion (which may not be justified because of the
previous statement) resulting from this last investigation is
that the transports in the lower layer are of the same order of
magnitude as the out-of-phase transports of the upper layer.

In view of the statements made at the end of Section §,
the results listed for the one-layer problem are approximately
valid for the non-steady tweo-layer problem provided:

(a) The thermocline adjusts itself to the mean wind dis-
tribution and remains fixed,

(b The mass transports of Problem 1 arec interpreted as
the transports in the upper layer,

The assumption of hydrostatic pressure is not necessary
for the solution of the mass transports in the steady problem.

Wherever the results of this analysis permit a compari-
son with observation, good qualitative agreement is achioved;
but the quantitative rcsults are off by a factor of about three,
In view of the many idealizing assumptions made, however, no more
than qualitative agreement could be hoped for.

A number of features have been left out of the present
model, Changing topography, non-linear terms, variable eddy
viscosity and many other fecatures could combine to change the
results noticeably. Howover, the analysis of the problem in-
cluding most of the features which werc omitted in our model

would probably rcyuire a numcerical trcatment.
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Appendix 1. TIransformation of the Differential Equations from

Spherical to Rectangular Coordinates.

Consider a rotating spherical coordinate system; let
r be the radial distance from the center of the sphere, © the

colatitude, ¢ the meridianal angle, The equations of motion are*

DU . Q2%r sinle - 2wQ si I N S R S
5t r sin®e wl sin © S ot g' + ; (v* A4 V)
2
oy ly o, Moo, uv_ weot 0,02 gin 0 cos ©
at or 1 9@ T sin © a9 r r
- 2 =-.l.l.a_2 .l .
wQ cos © 5 T 58 + p(V A V) v
QW L pOW L, v Ow , W 9w, wu _vwcot® -G
ot P tr o6 Y TIn G a¢ YT r + 2vicos 6
= - 1 4 8P + L(w
where % is the material derivative of the radial velocity in

terms of sphorical coordinates

g' denotes the gravitational force

i

p V°* AV sAV2 +l~9- (A a’) andv2 denotes the

p ar ‘"3 or
Laplacian operator for the two dimensions © and ¢ .,
We shall neglect the radial acceleration and shear terms

arising as a result of the velocities relative to the rotating

* We shall not consider the non-linear terms or the viscous
terms in the radial equation of motion; hence, this equation
is written in operator form only.
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sphere, We then have

) 10D -
par g (1)
2
QN LTy MW wuw . woot 9,02 g
at 6r+r O+rsin0 6<p+r - + Q°r sin © cos @

~2WwRcos 6 = - %

H

8 4 ap2y 4+ 1 2(a, OV
56 AVIV S 5 (A3 g7) (2)

QW 4 W 4 ¥ BW 4 W QW 4 Wu _ VW cot Q
at 8r T 86 T sin © o * T T +2vilcos @

-2 O A S ) o 2 128 v
usin 6 prsingaq)+Avw+par(A36r) (3)

where g = g' - §%€%92r2 sin2 ©) 1is the apparent gravitational

force, The viscous terms for equations (2) and (3) are

2y = A ov , 3°v 1 v v 2 cos © aw
Avev = 4. ¢ cot © &¥ + t —S - - 5 9 9w
r2‘{ 8 862 sine a¢2 sin®e sin®¢ 8¢

2 A oW , 8°w 1 ;Eg W 2 cos 0 3v
AYSw {cot@-—+ Tap— - -
;5 36 ¢ sin0 o9 sin®g sin2@ 09

]

Since the region of interest to us consists of a very
thin layer on the surface of the globe, we shall approximate
r by R, the mean radius of the earth, wnenever r appears in
undifferentiated form., At the same time let us define a new
east-west coordinate by x = @R sin ©, a north-south coordinate
by ¥y = R(% - @) and a vertical coordinate by z = r, Then
equations (1)-(3) become

()

o
olo
2ls
n
o
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%‘é+u§-‘zl-v§—"-+w-a—;’c+

[ 2 2
-2wQcos 6 =L 3R 4+ o< -0 03V 4, &V , 3%V _ v
P %? ‘ R Yy aye 3x2  R2sine
_2cot 0 awl,1 (. v

Qv + ugﬂ - v way + 4w cot © +2v 2 cos © = 2uQsin ©
i) 0z oy X R ! -
= -13P 4 <.c0t oW, 8% + 82w _ W _ 2 cot 6 av

p 0x R 9y " a8y  08x° R%sin®e R 8x

(6)

oo
NI
S

10
+ 5 37 (A3

Since R is very large, we shall neglect terms divided
by R. We can do this provided the region is sufficiently far
removed from the poles (6 = O,n) where cot © becomes infinite,
The velocity component u is assumed to be much smaller than the
components v and w so that we can neglect u throughout the
equations of motion,

Ordinarily, one uses the velocity components u,v,w to
correspond to the directions x,y,z respectively. In equations
(4)-(6), u,~v,w correspond to z,y,x respectively. The negative
sign was carried over from the definition of v which was defined
positive southward, If we revert to the more familiar nota=-
tions and write u' = w, v! = -v, w' = u, we have for equations
(4)~-(6)(with the terms with coefficient % and all terms con-

taining w' neglected)
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du', ,ou', vu' _2Qvy! sin (%)

it 0% dy
2
= - 12D u'y 3°¥ 10 ou'
pax+A ax2-+-.---§ay }+paz (A372-) (7)

2 2
= - 10D A V' 19 ov'
SgE=-e (9)

Tf the above procedure be carried out for the con-

tinuity equation, the latter becomes

qu' 4 9v' 4 dw' . 1
6x+ay+az 0 (10)

In making the transformation from spherical to
rectangular coordinates, we must consider the distortion of
the spherical surface as a result of the mapping process.
Specifically, a rectangle in the rectangular system maps into
a region on the sphere in such a manner that the east-west
distance remains constant and the right angles between the
1ines x = const. and y = const, map into obtuse angles be~
tween the lines on the sphere corresponding to X = const. and
y = const, Thus, the mapping is not conformal.

With the above transformation we have mapped a
spherical surface onto the plane. Our real aim, however, is

to map the equilibrium surface which establishes itself as a
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result of the interaction of centripetal acceleration and
gravity, onto the plane, We shall, therefore, neglect the
small difference between the true equilibrium surface and
the sphere,

The apparent gravity, g, in (1) acts perpendicular
to the spherical surface. We shall now consider g to act
perpendicular to the equilibrium surface. We‘must then
drop the term Q2r sin © cos 6 from the 6 equation since, in
reality, this force combines with g acting norma; to the
spherical surface, to give rise to a resultant normal to the
equilibrium surface, Finally, g = g' - §;(%-92r251n2@) is
assumed constant, The final result of the approximate trans-
formation is to map the equilibrium free surface of thc
ocean onto the x-y planc, with the apparent force of gravity

acting normal to this plane,




A11-101 | N

Appendix 2, leglect of the Mon-l.ineer Tsrms.

cgonsider the integrated equetions of meotion of section

3.
T Ay au' N au' N
3t dz + u' == dz + v! =='dz - Byj vidz
. P oy \
~h =i -h -}
=-gD-g-%+.ASnAu'dz+'rx (1)
4'1— -h

X

-1

-h

Snﬂ' dz + Sﬂ v! %‘L' dz + S” v! %'dz-&ﬁyj‘n v'dz

= =g -g.%+AS'qu'dz+Ty (2)

vhere we have linearized the pressure term in accordance with

x? Ty are now

the wind-stress components of section 3 divided by p. Assume

remarks to be iade later in sections 3 and 5. T

n' = U(x,y,t) X% , v' = V(x,y,t) oKZ

i,e. the velocities decay cxponcentielly with depth,

Then,
ou kz | " , 1= au 2z T,1% 80 2kz |0
ate 1 +gu-a-:-£e h+§ ayc 1

- — e ——— e - —— . - e e — e cawe —

A
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9y kz |1 = 8y 2%z |7 = 3% 2kz
3¢t e + é u 3% e + % v %% e N
=h - -h
+2Q sin(@) T2 | M2 wgDk+ MV e (M 41 x (&
£ n 8 D 5% ) Tk (%)

Approxiaatc the exponentials at their limits by

ekrl = 1, o=l o 0. Then (3) and (&) become

du,lzou, l=ou - _ -~
at+§uax+§v3§-2gsj’n(%)v"-"D%%k+AAu+TXk (5)
VL 1lg8,l5a s1nX) T = - 3

e tE UG TSV gyt 2Q uin(%) U=-gDh %?k + MV + Tk (6)

Linearize the Coriolis narsmeter by 2Q sin(%) = By
where B = %g o Teking the derivative of (6) with respect to
x and the derivative of (5) with respect to y and subtracting,

we have
9 (2% _ghy , L |a8a¥ , 52°% 4 ¥ o , 525V _ 0% o% _ 3o°u
ot ax ~ 8y’ = 2 |ox ax ax2 = 0X 8y = 98x0y  8x 3y 0% 8y
v o5 _ =otu 8u , ov = v _ o3
- 5 y T Va2 | TP tay) v v s Aa (G - 5
ot o
—t . =X
+ k(35 ay) (7)
Choose Ty = 0,7ty =~- (W +T' sin wt) cos ny.

We shall non-dimensionalize the velocitlies so that they
are of order unity in the interior of the ocean., It is con-

venient* to choose

*The choice of the non-dimensional quantities is motivated in
section U4,

- - e - —— —— ——‘-’W oy At ———— —— A
— —— e SR —_ s el e L e - o~ — —_

o ——"
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- S W . BosTg
V=322 © .

In this notation and with the prescribed form for v, and Ty ,

equation (7) becomes

2
U 3y 8V 2%V , 3V ov 3%V
s | g_‘l Lax' w0t U ok byt TRy
2
~2UQU _poU_ _QVaU _ y2a°y
ax'ay! ax'ay' oy'ay! ay'2
au , av —ent |BY U7 | | |
+y [ax'+ ay'] +V =¢ehp [ax' ay'] (1 + « sin T)sin nsy

(8)

The integrated, non-dimensionalized continuity equation be-

comes

LU 6V = &

=ty (9

&

If we expand the veloclties and the height, H, in a
series in &, then the solution can be looked upon as the sum
of a quasi-steady part plus a number of out-of-phase contribu-
tions. If & 1is small enough we may be justified in keeping
only the first two terms of such a series as a fairly accurate
representation of the complete series.

Hence, let

U=UO +bU1 +62U2 + eooe ’ V=Vo+bV1 +62V2 + eee
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Then for the equations of zero-order in &, we have*

aU av, 62U av,

aU
- (1 + a sin t)sin nsy!' (10)
au ov
0 o _
%! +-a—'}7'——- 0 (11)
The first order equations in & are:
: 2 2
3. (aVo an) [.aU av . 80, EXQ ‘U 0"V, - oV,
9T '9x' oy’ ax' 83X ax' ax' 8x! 2 ax'2
oH v,
+ e - -——Q"' = ! l -—-—l- 2
] y Fyen Vl el (-a—i-r ) (l)
au ov oH ,
..__]; ..._...1: R ) ‘
Rt ay " ot ° (13)

Munk, Groves, and Carrier [7] have shown that the effect
of the non-linear terms in [10] is quantitative and that these
non-linear terms can be neglected as compared to the Coriolils
term, V,. The relationship of the non-linear terms to the
Coriolis term in equation (12) is essentially the same as that
in equation (10). This fact can be shown by considerations
based on orders of magnitude. Wc choosc a typical non-linear

8, oV, 8, oy
term in each equation, ¥ ax' EET in (10) and ¥ 3% Fer B
(12), and comparc it to thc Coriolis terms in that equation,
Vo in (10) and VvV in (12).
In the solution it is shown that Uy, V5, U, V3 and all

their derivatives arc of order unity in the interior of the

*Equation sﬁo) with @ = O is thc same as that of Munk, Groves,
Carrier
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ocean, Near the boundary x' = O, it is shown that Uy = 0(1),
Vo = 0(5-1/3), Uy = 0(8'1/3), Vy = 0(e=2/3) and g%, has the

effect of multiplying the magnitude of a term by 0(8‘1/3).
Based on these results the terms to be compared are

given in the table below,

Interior Near x' =0
Vo = 0(1) Vo = 0 "1/3)
U, 8V U, 8V -1
Y 5% aw - 1O Y 5% 5w = YO
v, = 0(1) vy = 0(e™2/3)
oU, a3V
-0 1 U, oVy ~4/3
Ya%7T B%r - Y 0(1) Y 357 3% YO(e )

Thus, in the interior in cach case we have0(1l) vs,
y0(1) . Near the boundary x' = O, in cach casc we must com-
pare 0(1) vs. yvO0(e=2/3), Hence, the relationship of the non-
lincar terms to the Coriolls teorms is essentially the same
in the two sets of equations., It would secm therefore that,
if the non-linear terms can bc neglected in the steady cquation
(10), they can also be neglccted in the first-order, non-steady
equation (12).
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Appcndix 3. Hydrostatic Pressure Assumption.

The results in the main body of the report are based on
the assumption that the vertical cquation of motion can be
approximated by the hydrostatic pressure equation. Although
this approximation is probably sufficiently accurate for the
problem under consideration, it may warrant a few further
remarks,

Consider the steady, lincarized problem, The equations

of motion with a linearized Coriolils term are

- ' = -1 3P vop 1 B, QU
Pyv Foax P ) (1)
R vy i Qo(p, X
Byu 5 %§ + AAV' + 5 az(A3 T ) (2)
and the continuity cquation is
aloul) , a(pv!) , 3(w') _ g (3)
dx dy 0z
Equations (1) and (2) can be multiplied by the density
to yield
- Pyv'p = - 2B ! R au'
Byvie ox T As (pu') + az(A3 0z )
1o = - QP ' 3. av!
Pyu'p 5y AL (Pv!) + oAy S50)

wherc we have written AA(pu') for ApM' and AA (pv') for
ApAv', This approximation is certainly permissible since
these terms represent, in the first instance, only very rough

approximations to the truc state of affairs in turbulent motion.
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If we integrate (1)-(3) from a depth z = - h(x,y,t)
where the motion is assumed ncgligible to the free surface

z =1n(x,y,t), then

-B T=- " 2 T u' n
B, ¥ S P az + 4T + Ay I (%)
-h ~h
T oo M3 \ii ! n
+ By, T = 5 Eg dz + MV + Ay $¥ ‘ (5)
=h -h
aU v _
B + -55; =0 (6)

where the non-lincar torms resulting from the interchange of

derivatives and integrals in thce viscous terms have been

ncglected,
. aur | vt | 0o
The terms A3 T = Ty and A3 T Ty

provide the wind-stress componcnts at the free surface (see
sce., 3 of report). The depth 2z = -h has been chosen as that
depth wherc the velecitics arc ncgligible so that the contribu-
tions of the above terms at the lower limit are negligible.,
When the g%' term in the continuity cquation is intcgrated,

it provides a contribution involving a time-derivative, viz.,

Q%%gl , so that it vanishes in the proscnt problem.

The prcssurc terms are

S T3 g4
X
~h

[}

{

T dz = 8 |" pdz-281p -0hp
h oy . )
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where p. 1s p evaluated at z =1 , and P is p evaluated at

1
Z="h.
If the free surface be considered a surface of zero

pressure, then Pq = O.

Defining

By 5% * 33 Pop * AU + Ty (7)
By U 5y + 5y Py + AAV + Ty (8)
A stream function ¥ can be defined by U = - %% y V = + %%

so that (6) is satisfied identically. Taking the derivative of
(7) with respect to y and (8) with respect to x and subtracting,

we obtain

_ gy, =0on%-n _on0pp , Ot 0Ty
AMAY - BYy = 22 5 "% o T = (9)

Since z = ~h is the depth where the velocities are
negligible, the third equation of motion below this depth re-

duces.to the hydrostatic pressure equation, =~ ap g if

- | on  OP-h _ go0h  OP-h
is constant along z = -h(x,y,t). Then el g A

= gp%% . With these results substituted into (9), we have

ot AT
AADY - Byy = _a__>_’_}_c - -53?! (10)
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If boundary conditions are imposed and if my and Ty
are specified, the problem defined by (10) can be solved (see
Appendix 5). Thus for the analysis of the steady state prob-
lem, the only necessary assumption concerning the pressure and
the density is that the density be constant along the surface
below which the velocities are negligible,

If the height z = -h 1s approximated by a constant,
then the derivatives of the pressure terms in (9) vanish and

no assumption need be made concerning the density along the

surface z = -h,
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Appendix 4(a). Derivation of Relationship Between T and q.

With the density distribution given by
P=P4 n> 2z >"T
p=poLl1 + c(T-2)] T> z> T -4
P=p p=P 1 +cal] T-4a>z

we can find a relationship between T and n by considering the

conditions

Rele) =0

0x z2=-h

ol

i8p I = 0.
p oy 7==h

The hydrostatic pressure equation is

p =g S” pdg
Z

op _g (1 23 5
%”%SZ = A +ER ey

ol o

e):] = n 2 o, .
pax‘=_h-pﬁj_haxdc +p'%1axpo—o

But

@
ta

Hence,
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'O"..J
Q|
B

il
©
N
=

Sy
-3

1

jo N

©
o]

0
Q)lO)
b ]

Q

e

+
O
[ I‘O
=l lo]
(@]
25

1}
(@]

or

cd 3L 4 9 . 0]

ox 3x
where Ap = Pop = Pg v
Similarly;
or _ Pood
T - & (@)

where T = -~ C when n = O,

Appendix 4(b)., Derivation of Integrated Pressure Terms.

' L n13d
> te i 0p 1%
In order to compute the terms th S 3% dz, -h 5 3y dz,

we must divide the region of intcgration into three scparate

1 aT-d T n
J’ = + S +
-h ) -h T-3 T

parts, viz.,

T-d N i, N
19D az = 1 5 % d¢]adz + g j 1 5 2 ar]dz
jlhp ox g<§-h p [ z 0X T-d P[ z 0X
n n n
X S 2 an 1
e ST P [SZ ox 41z +epy 5y jih p 42 (1)




All-101

Using the values of %§

4(a), we have

M2 4¢ =
fo3ga

Then

95

for the three layers listed in Appendix

=P, cd %% z < T-d

= T (- -

= P Fy (T-2) T-d £z LT
=0 T < 2z

22 agldz = ¢ lidd g'f( [T-d + h}

T-q P 5 OX cd+l
o 1 3p ] =0
€ jT P [Sz ox ¢ laz

use
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(P

+gq§-§-{+gﬁ- r]+D)-g-;l(

= - 801 Ph o 8 dn _P-h g o
cax+gmqa—;l{+g051}l{ —%a—ﬂ-xlog

>

But ,
Ap+p
1oge.9_=-]_og.e:_13=-]_o ( ) = - lo A.Q.+1
P e g o ) g(po )

Since the term 42 is small we can write

o}

‘ 2
log(l + 80y =z 8o _ 1 (A
Po Po 2 po)

Hence (2) becomes

r]l_.p_p - ~ p-h d ol
Similarly,
n
L8 dz =g (c+P=hq,4d)d
g_hpay 2=8CrgEnts) o

whereD§C+§.

e A
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Appendix 9. An Txample of Boundary Layer Tochniquc,*

In this section we shall discuss thc application of
the boundary layer technique to the solution of the problem

defined by the equation
ey - wx = (l+a sint) sin nsy (1)
and the boundary conditions
$ =¥, =0 onx=0,r (2)
y =9 =Oony = 0,1,

The nature of the boundary layer problem is characterized
by three features: (1) the problem is non-dimensionalized so
that the sizc of the domain has lcngths of order unity; (2)
the coefficient of the most highly differentiated term is
small compared to unity; (3) the remaining terms have coeffi-
cients of order unity. The problem to be considered here has
alrcady been put into a suitable non-dimensional form.

If Y were everywhere a smooth** function of its arguments
and of order unity, then it should be possible to dctermine a
good approximation to the solution by neglecting the term with

cocfficicnt e(e <<1) and by considering the remaining equation

For an interesting account of boundary layer technique, in-
cluding the trcatment of non-linear problems, the rcader is
referred to [8] .

o By"smooth" wc mean that ¢ has no larse derivatives, i.e,,
Y, wx’ wxxxx’ cte., are all of the same order of magnitudc,

- -
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Yy = - (1+a sin <) sin nsy (3)
Thus, a possible solution is
V4 = (1« sin ) sin nsy [- x + Cy1(y,T) 1. (4)

We arc now faced with a dilemna, however. ¢ as given
in (4) provides onc arbitrary function of y and T to satisfy
the four conditions on the boundarics x = 0y x = r, If our
assumption that ¢ is everywhere a smooth function is correct,
then we are at a loss to find a complete answer to the probloem,
For if ¢y and its derivatives have the same order of magnitude
everywhere, the only possible solution is of the fdrm
¢i + 0(e) and it is not possible to satisfy all boundary con-
ditions,

It is obvious, therefore, that ¥ cannot be smooth
everywhere., In particular, in order for the full solution
to be different fromd; + O(e), at least one of the terms,
wxxxx’ ¢xxyy’ or wyyyy must bo of order e~ in some part of
the domain undcr consideration so that the approximation of
ncglecting terms of order € will not reducce the order of the
differcential equation. If ¢ is smooth away from the boundaries
and if derivatives with rcspect to x arc large, so that
¢xxxx is of order s‘l, ncar x = O,r, then the problem is one
of the boundary layer type. We shall procecd formally on the
assumption that this is truc, realizing that if it is not the

case, wc shall be led to a contradiction.
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The solution may now be written as the sum of two parts-
¢i given by (4)(the "interior solution"), wb being sensibly
large only near the boundary and negligibly small in the in-
terior, (the "boundary laycr contribution"). We must now try
to determine the boundary layer contribution,

The nature of the total solution itself 1s the guiding
factor in the investigation. We have supposed that near the
boundaries x = O,r, Yy has large derivatives with respect to x
while ¥4 1s cverywherc smooth and of order unity. Thus, if we
write our solution in two parts, i.c., ¥; + ¥, the differcntial

equation can be written in the form

eAAYy + edA wb - by - wbx = (1+a gin T)sin nsy.

Now the term eAawi is of order e, the terms underlined twice

are of order unity and the order of magnitude of the terms
underlined once is as yet undetermined. Since the terms in

¢b are to have derivatives with respect to x which arc (assumed)
large, we have wbx >> 1, Hence at lcast one of the terms of
eAMpy must be as large as Yy 1n order to balance this term.

The equation will then be satisfied approximately if we write

-$;, = (L+a sin ©) sin nsy
and

eAM, = by, = O (5)

We must now integrate thesc cquations and then add the two

solutions $4 andy to form the complete solution ¢ .
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The solution to the first of the two equations is given
by (4). Sincc the complete solution will only be approximate,
in that terms of order & have already been negleeted, ¢b nced
only be determined approximately.

It is suggested by the above considerations that we
find a formal method for writing our equation so that the
magnitudes of the tcorms are expressed by the coefficients and
that the derivatives, ete., be of order unity. We can do this
by strctching the x coordinate near the boundary i.e., by de-
fining a new x coordinate so that a particular distancc in x
becomcs a much larger distance in the new coordinate,

Formally, we operatc as follows. Let x be replaced by

the coordinate ¥ such that
x = eBg

where n is to be determined. Then the cquation (5) becomes

<4n+l -2n+l -n _
€ Yo *+ 2 Yog gy + Voyyyy - Vg = O

In choosing n we note that it must be positive if the
x coordinate is to be stretched. Thus of the terms which
originally had coefficient €, g -n+l wbEEEE is the largest
since 1t has the largest cocefficicnt (n.b. ¢b€’ wbEEEE’
wbEEYY’ ¢byyyy are the same order of magnitude). This term
is matched with e™@ wbE’ the remaining large term in the
differential equation, and by equating the coefficients of the

above two terms, we have n = 1/3,
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Thus we get

-1/3 nel/3 -1/3 _
¢ Porgee * 2577 Ypreyy * € Ypypyy - C Ypg = ©
or

— 2/3
Yperge = Ypg = 077D,

Now if wb be expanded into an asymptotic series and if
we keep only the first term in the series (for all practieal
purposes, this amounts to neglecting the 0(e2/3) terms), we

have

wbEEEE -«bbg =0 : (6)

The solution to (6) is
2n

£, . ge 1
wb = Cyo(yyT) + ng(y,T)e + u32(y,1)e 3

+ 042(y,1)e€e "3

We have gspecified that this solution is to become
negligibly small as the distance from the boundary increases.
Thus letting 3o, we note that it is necessary that C12 =
Cop = O since nelther C,, nor e’ tends to zero. Hence, for
the region near x = 0, we have

2nd bni
by = Oy’ T3 4 Oy T3

1/3

or, changing our coordinates back to x by means of x =€ £,

U ORI — i e -+ - e - - e —— = e e ot
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-1/ 2ri - Ypi
¢b = 032(y,'c)exe 1/3 e 3 + Chz(y,'r)exs 1/3 e 3

For the boundary near x =r, we now define { by
(x-r) = e

and specify that the solution vanish as &-o», i.e., as the
distance into the interior part of the ocean increases., By

a similar analysis, we find that near x = r,

Yy = 013(y,1) + 023(y,1:)eE + 033(y,¢)e€e 3

. Yni
+ 043(y,1)ege 3
In order for \bb to tend to zero as §— - @, 1t is
necessary that 013 = 033 = 043 = O, Hence
(x-r)&"1/3

q;b = C23(y,'c)eE 023(y,"c)e

The total boundary layer solution can be written

(x-1) e~1/3 -1/3 ¢ g“Tl.

$y = Coly, e + Cy(y, e’

~1/3 o bnd

+ 04(Y,r)ex 3 (7)

The solution throughout the domain consists of (4) and
(7) or

Y=y + ¥y = (1+ asint )sin nsy{[ -x + Cl(y’“ 9]

-1/3 -1/3_ 2ni
+ Cz(y,r)e(x'r)e + C3(y,»\:)eXE e'f%‘

i/l gt |

+ Cy(y,v)e (8)
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An application of the boundary conditions, ¢ = ¢x =0

on x = O,r, yields

-1/3
b= (1+asint) sin nsy] -xtr-g/3 4+ (/3 (x-rie
% I L L
1 )
+ [(13r)co0s @33y 4 (3 613 - Zisn @agl,
3 xe "1/ }
ew '§-' |

The term 1 is valid throughout the ocean, Near x = O, 3 be-
comes as important as 1 and gets negligibly small as x in-~
creases, Near x = r, 2 and 1 together form the solution but

< tends to zero as x decreases,

| Perhaps a few remarks should be made as to the specific
choice of sin nsy for the total y dependence of the solution.
The particular choice of sin nsy satisfies the boundary con-
ditions V¥ =1byy =0ony =0, y =1, and is supported by the
specified wind distribution. Thus we were not forced to resort
to a boundary layer analysis to satisfy the four boundary
conditions. Of course, such a simple choice is not always
possible, and one might have to resort to methods for refining
the interior solution in other problems in order to satisfy

the necessary boundary conditions.
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Figs. 4,5,6

Height incms.of free surface for s?uthem halt of réctangulor oceon 7t different times"

re0, ruf, o, =Y. he correction of the perturbation terms is negligible.
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